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Abstract

Evolutionary Strategies (ES) are effective forms of Evolutionary Algo-
rithms that enable solving optimization problems. Effective use of ES algo-
rithm has been made in numerous fields. Major optimization problems of
today possess a very complex fitness landscape with numerous modalities.
The optimization in these complex landscapes is much more difficult as it is
possible only to explore a relatively small section of the entire landscape.
Also the fitness function behaves in a very sensitive manner with a large
amount of change for small changes in the parameter values. We hence
propose a hierarchical ES to optimally explore the fitness landscape and re-
turn the optima. The inner or the slave ES is controlled by a controlling algo-
rithm or the master. The master has a number of slave ES, each trying to find
a solution at some different part of the complex high dimensional fitness land-
scape. Each ES tries to find the optimal point in its local surroundings. Hence
the variable step size is initially kept low. As the iterations of the master in-
crease, we keep reducing the number of ESs and increase the step size to
give it a global nature. This is the local to global nature search performed by
the algorithm. Since the fitness landscape is complex, the master mutates
the locations of the ESs and adds new ESs (deleting the non-optimal ones)
as iterations or generations proceed. The novelty of the suggested approach
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lies in the tradeoff between the search for global optima and convergence to
local optima that can be controlled between the two hierarchies. Experimen-
tal analysis shows that the proposed algorithm gives a decent performance in
simple optimization problems, but a better performance as we increase the
complexity, when compared with the conventional Genetic Algorithm, Particle
Swarm Optimization and conventional ES.

Keywords: Hierarchical Evolutionary Strategies; Evolutionary Strate-
gies; Evolutionary Algorithms; Fitness Landscape; Dimensionality; Optimiza-
tion

1. Introduction

Evolutionary Algorithms (EA) take an analogy from the natural evolu-
tionary process for solving the optimization problems. Here one generation of
individuals contributes for the making of the higher generation of individuals.
The fitness improves as we iterate to the higher generations (Mitchell 1998).
EAs mainly incorporate Genetic Algorithms, Genetic Programming and Evo-
lutionary Strategies (ES). The ES is a novel method of problem solving with
limited individuals (Rechenberg 1973; Schwefel, 1995). Here recombination
takes place among the parents to generate the children. Mutation is applied
to all the generated children. The best individuals (may or may not comprise
of parents) go to the next generation. The ES may hence be abbreviated by
(λ/ρ,+ µ) which means that population consists of λ parents. µ children are
made in the next generation out of these parents. Each child is generated by
recombination of λ number of parents. Then we take combined λ parents and
µ children to generate new µ individuals of the next generation. If '+' is not
used in the notation, then only the best of µ children make the generation. In
this manner the algorithm keeps iterating along with generations and gener-
ates newer individuals.

ES have been applied to numerous problems that range from simple
functional optimization to design optimization and robotic path planning. These
algorithms give optimal results that usually converge well into the global minima
(Manderick 1993). However this may not be necessarily true for highly com-
plex landscapes. The complex landscapes usually span across multiple di-
mensions and assume very complex structures that are difficult for any con-
ventional evolutionary technique or search strategy to get the global minima
(Yao 1993; Kala et al. 2009a, 2009b). Complex landscapes may be explored
to a reasonably small extent due to the finiteness of time. The highly sensitive
nature displayed by these algorithms makes it difficult to get the global minima.
As a result the algorithms may usually converge to a local minima or any
point far from the vicinity of the global minima. The conventional algorithms
may behave more random due to the complexity.
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EAs are conventional and widely used means of problem solving for
the optimization problems. They use many operators (Deb 1999, Deb and
Agrawal 1999) to generate individuals from a lower generation to a higher
generation. These operators may be controlled with the help of some system
parameters. Fixing the correct values to these parameters has of a lot of
importance for the optimal working of the algorithm. A major limitation of
these algorithms is that these parameters are human controlled. As a result
the users have to try again and again to find the optimal value of the param-
eters looking at the results and other indicators. These parameters are al-
ways prone to be sub-optimal that do not result in the best solutions.  A lot of
effort exists to make these algorithms free of parameter to avoid the problem
(Lobo, Lima and Michalewics 2007). However we would always have to set
some parameters of the system as per the No Free Lunch (NFL) theorems
(Wolpert and Mcready 1997).

Crossover and mutation rate are two commonly used parameters for
control of the EA as per the fitness landscape and scenario of the EA (Syswerda
1989; Jong and Spears 1991, 1992; Eberhart and Shi 2006; Shukla, Tiwari
and Kala 2010). The crossover encourages the individuals of the population
to converge around the best points as they search for the optima. On the
other hand mutation tries to encourage the exploratory nature of the individu-
als by making them explore at places around the present coverage. In this
manner crossover contracts the search space while mutation expands the
same. These parameters are set by the user looking at the convergence rate
of the EA. A premature convergence may mean a decrease in crossover and
increase in mutation rate and vice versa. In this manner the EA is able to
search for optima in the fitness landscape.

The ES further make extensive use of parameters that contribute to-
wards the effective working of these algorithms. λ, µ and ρ are the fundamen-
tal parameters that are usually kept constant in the program run. The other
important parameters would involve the step size (σ), the total number of
generations for which the algorithm is executed and the initial individuals of
the algorithm. All these have an impact on the effective working of the algo-
rithm in some or the other way that is analogous to the EAs.

The failure or inability of a single EA to solve the optimization problem
in case of complex fitness landscape results in the use of multiple algorithms
or hybridization of algorithms. Here we wish to combine algorithms in such a
manner that the advantage of one overcomes the disadvantage of the latter.
Hybridization usually results in effective performance boost especially in prob-
lems where all simple methods fail. The increasing complexity has resulted in
a lot of use of hybrid algorithms over various spheres. The hybridization in
Evolutionary Algorithms is no exception which sees the fusion of evolutionary
techniques for effective problem solving.
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This work reports the control of ES by a master control technique. We
hence implement the algorithm in two levels of hierarchies, the master and
the slave. The slave is a simple ES. The slave ES needs control and coordi-
nation. For this purpose we implement a master algorithm that works over
the slave ES. The master has multiple instances of different slave ESs work-
ing at various positions of the fitness landscape. All these ESs work in isola-
tion of each other and search for some local minima in their near vicinity. The
master tries to do parameter control of the slave ESs by fixing their number of
generations, position of individuals and mutation strengths. The whole algo-
rithm is built over the local to global approach. This means that at the first few
time steps we try to find the various local minima at various locations of the
fitness landscape. As the algorithm proceeds, we intend to search or the
global minima. Hence the numbers of ES instances reduce with time to en-
able a single ES take charge of the entire landscape based on the observa-
tions of the earlier ES instances and runs. Also the mutation strength and
number of generations are increased by the master for more exploration and
search for global minima.

This paper is organized as follows. In section 2 we present the related
works. The CMA Evolutionary strategy used in this paper is introduced in
section 3. Section 4 gives the general algorithmic framework. This includes
the slave and master. Section 5 would present the various parameters of the
ES. In section 6 we discuss some of the simulation results. We give the
conclusions in section 7.

2. RELATED WORK

Various concepts of hierarchies are implemented in Evolutionary Strat-
egies (ES). Rudolph (1997) used a nested evolutionary strategy where the
step size of the lower ES was modified after a few iterations. Lohmann (1992)
used nested ES for discrete and continuous variable problems. Here the in-
ner generations were for the optimization of continuous variables. After a few
iterations, the discrete variables were changed. Arnold and Castellarin (2009)
used hierarchical ES to adapt the isolation period. Here the isolation period
was increased or decreased based on the success of the earlier runs.

Various attempts have been made previously for optimization in com-
plex landscapes for complex problems. The Hierarchical Genetic Algorithm
(HGA) proposed by Jong et al. (2004) is a novel approach. Here the authors
used the notion of modularity and hierarchy and developed an algorithm for
optimization. The individuals in a hierarchy correspond to many modules.
Mutation and crossover were proposed to act upon this structure. An applica-
tion of a hierarchical individual representation and adapted crossover and
mutation operators may be seen in the recent works of Kumar et al. (2008).
Here the authors applied the Hierarchical Genetic Algorithm for the problem
of multilevel allocation redundancy. Wang et al. (2002) used another hierar-
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chical representation for the problem of robotic path planning using HGA.
Yen and Lu (2000) used hierarchical representation for evolving a neural net-
work.

The Island Model Parallel Genetic Algorithm (IMGA) is another novel
concept proposed by Gordon et al. (1992). Here the entire population is di-
vided into sub-populations. The sub-populations operate in isolation to each
other. The migration of individual in-between sub-populations is carried out
using migration strategies. Using a similar structure Antonio (2006) suggested
a HGA with age based structure. Here he also used controlled mutation in
order to improve the local search of the individual. The different hierarchies
proposed by Antonio further make it possible for the use of different cross-
over operators running on different crossover techniques. A comparison of
different crossover operators related to elitist hybrid crossover with genetic
improvement, elitist parameterized uniform crossover, and age parameter-
ized uniform crossover is provided in (António 2008). Sefrioui and Jacques
(2000) also used different models at various hierarchies to carry out optimi-
zation.

The Hierarchical Fair Competition based Genetic Algorithms (HFCGA)
are a class of Genetic Algorithms that solve the problem of premature con-
vergence in HGA (Hu et al 2002, 2005). Here we associate every individual
with a class and then every class undergoes a fair competition amongst its
members. The migration is carried out between the various hierarchies of
populations based on these scores. Oh et al. (2009) presented an application
of such algorithm in the problem of design of fuzzy cascade controllers where
this algorithm was used for optimization of the fuzzy system.

Garai and Chaudhuri (2007) proposed a similar algorithm called the
Distributed Hierarchical Genetic Algorithm (DHGA). Here they divided the
entire sub space into smaller sub spaces. The distribution was affected by
migration that followed a coarser to finer rule where the resolution of the
search space was increased as the algorithm executed.  Lim et al. (2007)
further proposed the entire work of HGA onto a Grid Computing framework.
The algorithm was called as the Grid Computing Hierarchical Parallel Ge-
netic Algorithm (GE-HPGA).

3. CMA EVOLUTIONARY STRATEGIES

CMA-ES or the Covariance Matrix Adaptation Evolutionary Strategy
(Hansen 2008) is a classical implementation of ES that uses a Covariance
Matrix for the computation of the mutation strengths of the individuals of the
population.

The basic concept behind the algorithm is the creation of a higher of
generation individuals by sampling a multivariate normal distribution. The
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basic equation for this generation from the generation i to the generation i+1
is given by equation (1).

Σ
i

x i+1
k Ηmi+ Ν (0, C )

i (1)

Here xi+1
k
 denotes the kth individual in a population of λ individuals for

the generation i+1.

mi is the mean value of the search distribution

σi is the overall standard deviation or the step size. This ultimately
leads to the mutation strength in the population.

N(0,Ci) is a multivariate normal distribution with zero mean and cova-
riance matrix Ci

The new mean of the generation i+1 from a generation i is the weighted
mean of the population that has already been generated for the new genera-
tion using equation (1). This is given by equation (2).

Σ
i=1

n
mi+1= wj xi+1

j : λ (2)

Here w
j
 are the weight coefficients for recombination. w

j
=1, 2, 3 ...µ =

1/µ for equal weightage strategy.
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1

j+1, x
2
j+1 , x

3
j+1..., xλ

j+1 where the
individuals are sorted by their fitness.

The weights w
j 
have been normalized and hence obey the equation

(3). Further w
j
 are always sorted in descending order to enable higher contri-

bution of fitter individuals.

Σ
j=1

n
wj =1 (3)

Assigning of d ifferent weights w
j
 for the various individuals is

referred as the selection mechanism of the ES as the different individuals
give different contributions to the final individual in accordance with their as-
signed weights. Variance effective selection mass (µ

eff
) is given by equation

(4). This parameter always lies between 1 and µ and may normally be as-
signed a value of λ/4.

Σ
i=1

n
= w2

iµeff 


-1




(4)

The next task is to adapt the covariance matrix Ci. This is done as a
combination of two procedures called as rank 1 update and rank µ update.
The resultant equation may be given by equation (5).
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(5)

Here

µ
cov

 ≥ 1. Choosing µ
cov

 = µ
eff

 is most appropriate

c
cov

 ≈ min(µ
cov

, µ
eff

, n2)/n2

y
j:λ

i+1 = (x
j:λ

i+1 - mi)/σ2

The next step to be performed is the adaptation of the step length or
σi+1. This value denotes the step length and must be optimal; in accordance
with the length of the path. The adaptation of this factor is carried out with the
comparison between the length of the path with that of the expected length of
path under random conditions. The resultant equation is given by (6).

(6)

Here E||N(0,I)|| is the expected path length on a random distribution

d≈1 is the damping parameter that scales the change magnitude of ln
σi.

pσi+1 is the conjugation evolution path given by equation (7)

(7)

A detailed description of the CMA-ES is available in (Hansen 2008).

4. ALGORITHM

The algorithm works at two hierarchies of master and slave. The mas-
ter algorithm is supposed to carry forward the task of coordination and con-
trol over the slave algorithm which is a standard CMA-ES. In this manner the
algorithm chiefly incorporates the concept of controlled ES over a complex
fitness landscape. The slave ES is given a particularly small portion of the
complex fitness landscape to solve. As the algorithm proceeds, the effective
area increases which denotes a more global nature of the algorithm. The
general master-slave framework of the algorithm is given in figure 1.

The number of slave ESs instances is kept large at the first little itera-
tions. As the algorithm proceeds with generations, we keep reducing the num-
ber of ESs instances. This may be interpreted as we start with an intention to
explore and find out the local optima at specific parts of the fitness space.
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Later based on its findings, we try to search for the global optima. At the last
few generations, the number of ES instances is unity. Now the ES searches
for the entire search space and hence tries to find the global optima. This is
the local to global search strategy of the algorithm.

Figure 1: Hierarchical nature of the algorithm in terms of master
Evolutionary Algorithm and slave Evolutionary

4.1 Slave CMA-ES

The slave is simply an instance of CMA-ES as discussed in section 3.
The purpose of the slave ES is to search for the optima in the restricted
search space. In other words the slave ES searches for the local optima. The
basic purpose of the slave ES is to fully explore in-depth the given fitness
landscape. This gives a clear idea of the nature and fitness of that region of
the space with the investment of computation. Another important fact is that
for many real-life situations the algorithm may need a good result early. In
such scenarios it is better to go deep and converge into some local optima,
rather than keep searching for global optima. The results and other findings
of this ES are of a high importance to the master controller that tries to con-
trol the slave ES in a manner that the best solution is found within the time
restrictions. The algorithm for the slave ES is shown in figure 2.

We know that the input given to the slave ES is almost always a simple
fitness landscape with limited search space. Hence we adapt the various
operators and parameters to match this need of the slave ES. The number of
generations in a local ES may also be called as the isolation period. This is

 
Master EA  

Slave 
ES 2 

Slave 
ES 1 

Slave 
ES n  

Master EA  
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the time when all local ESs operate in isolation from each other. The number
of generations in ES again depends upon the complexity of the fitness land-
scape. A simple landscape might require a few generations as compared to a
complex one. The larger the number of generations, the more is the explora-
tion performed by the ES which means a larger computational cost as well.
Accordingly, the number of generations is kept low at start and they have a
general increase as we proceed with the algorithm.

Figure 2: Slave Evolutionary Strategy

 Initialize Variables  

Generate Next Generation 
Individual 

Fitness Evaluation of the 
generated Individuals 

Update Evolution Path 

Adapt Covariance Matrix, 
Step Size and other Variables  

While 
Generations 

left 

Information to Master EA 
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The step size (σ) in a CMA-ES decides its exploratory nature that ulti-
mately decides the basic region in which the ES would work. The larger the
value of this parameter means that the algorithm is allowed to make large
mutations and hence spread the individuals across a comparatively larger
area. As the generations increase, the movement further increases and cov-
ers the entire fitness landscape. This is contradictory to the ES which has a
small value of this parameter, where the steps restrict individual movements
to a very small area. At the initial iterations the step size is kept low, as we are
primarily interested in searching for local optima. This also restricts the ES
from entering fitness space that is in possession with some other local ES. As
the algorithm reaches higher generations, the step size is increased. This is
again because of the fact that much of the good parts of the fitness space are
already explored at various lower generation runs. As a result we need a high
mutation rate at the end to explore new areas.

4.2 Master Controller

While the slave CMA-ES works in a restricted fitness space, the task
of the master controller is to define and distribute this fitness space among
the slave ESs. The other task of the master ES is the parameter control and
the coordination of the slave ESs. The algorithm for the master controller is
shown in figure 3. The entire algorithm behaves like a mini evolutionary algo-
rithm with its own operators that are used to control the slave ESs. Each
slave ES instance acts like an individual of this evolutionary algorithm. The
algorithm at every generation first uses a selection strategy to select the best
few ES instances. It then adds new instances of ES to this pool. All the ES
instances undergo a mutation operation where the mean positions of these
ES individuals are mutated and moved in the fitness landscape by an amount
depending upon the fitness landscape. The various parameters of the ES
increase or decrease with time with the parameter control logic. We discuss
the various concepts in the following subsections.

4.2.1 Representation: Each individual p of the master evolutionary
algorithm is an instance of the slave ES. The slave ES is represented by its
mean individual X

p
. Further each ES has parameters that affect its perfor-

mance. Most of the CMA-ES parameters may be kept constant or computed
from the best practices (Hansen 2008), the parameters that need to be fixed
are the stopping criterion and the step size (σ). Here we use the number of
iterations (G) or generations as the stopping criterion. Both these parameters
are constant for all instances of ESs.

4.2.2 Number of Individuals: Each individual of the master EA or the
number of ES instances are variable in number and change along with time.
This is done to maintain a local to global strategy of the algorithm. The num-
ber of individuals (ni) at generation i decrease along with time following equa-
tion (8).
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Figure 3: Master Evolutionary Algorithm

(8)

Here G is the total number of generations for master EA

n0 is the maximum number of individuals

4.2.3 Selection: Only the best c% individuals required by the next
generation go from the previous generation. Here c is the relative contribution
of previous generation to the next generation. The fitness of the mean solu-
tion of the ES is used as a measure of the goodness of the individual of the
master EA. However we need to pay attention towards diversity as well to
avoid individuals with same or close position in the fitness landscape to work
in the next iteration. This is important as for every iteration of the master,
there is a complete cycle of slave ES that gives it enough time to search for

 Initialization 
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Fitness Updating 

Increase Step Size, Generations 

Decrease No of Individuals 
 

Select Individuals for next generation 

While 
Generations 

left 

Add new Individuals for next generation 
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the optima in the close vicinity depending upon the step size and number of
generations fixed. Similar ESs may merge if allowed to pass from one gen-
eration to the other of the master EA. Here we pass an individual to the next
generation only when it is located at some threshold distance (ή) in the fit-
ness landscape from the other individuals.

4.2.4 New Individuals: This is an operator that adds new ES instances
or individuals into the population pool of the master EA. In all (100-c)% of
individuals required for the next generation are added by this operator. They
are located at completely random positions in the fitness landscape. Since
the landscape is complex, there might be an incentive to invest computation
at random places as well from time to time. This is implemented by this
operator.

4.2.4 Mutation: All individuals of the master EA undergo mutation which
changes their position by a small amount in the fitness landscape depending
upon the mutation rate (m) which is fixed. Any individual Xp after mutation
changes its position given by equation (9).

Xp'=Xp'(1+rand*m) (9)

Here rand is a random number on the range -1 to 1.

4.2.5 Evolutionary Strategy Parameters: The two ES parameters
Step Size (σi) and Generations (Gi) increase with time that enable a more
exploratory nature needed to explore the global optima along with time. These
are given by equation (10) and (11)

(10)

(11)

Here σ
inc

 is the maximum increase in step size from initial step size.

G
inc

 is the maximum increase in number of generations from initial
number of generations.

5 VARIOUS GENETIC PARAMETERS

In section 4 we introduced various parameters that make up the new
Evolutionary Algorithm implemented by the master controller. The param-
eters that we have added and would like to study are the initial number of
clusters, initial number of ES instances or individuals, total generations of
master EA, mutation rate, contribution of previous generation to next genera-
tion (c), increase in step size and increase in generations.
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The initial number of ES instances denotes the localized nature of the
algorithm. The more the number of instances, the more is the approach of the
algorithm not to converge at the optima assuming a limited constant compu-
tation. It may however be able to escape the local optima and get towards
global optima. It closely resembles the number of individuals in the conven-
tional GA where more individuals add randomness. For most real life applica-
tions, which require a very fast results we may keep the number of clusters
high. For applications that are not much time restrictive, the clusters may be
kept low for more time to be spent on the global exploratory nature of the
algorithm. The more the number of instances, the more is the randomness or
convergence to local optima which may be desirable in real life scenarios.

The total generations of the master EA is similar in nature to the role of
number of generations in any EA. The more generations require more com-
putation. In many cases the higher generations may result in working over an
already converged result and hence may not be very useful. Suppose we
keep the computation time constant, higher generation would mean a shorter
computation per iteration or small number of individuals. This is an indication
of higher global optima search trends, escaping from the local optima.

The step size is kept sufficiently low for easy search for the local op-
tima by the local ES. A high initial step size results in a lot of exploration
outside the allotted search space in the initial iterations as well. This may be
an attempt not to converge to local optima, but to search the global optima.
As a result we take longer to generate good solutions, but the chances of
being near the global optima are high.

The mutation rate decides the displacement of the mean individuals of
the slave ES in the algorithm. A high mutation might place them at completely
random place and the algorithm would behave more or less random. At the
same time keeping very small values may make them converge at more or
less same place at every run of the slave ES. This would be a waste of com-
putation since the results may not improve significantly over generations.

Similar is the case with the factor denoting contribution of previous
generation to next generation (c). A small value of this factor denotes com-
plete randomness of the algorithm with every run of ES starting at some
random point. A larger value may lead to no incentive for exploration in the
complex space which is a need of the algorithm.

The increase in step size is a similar factor in its behaviour in algorith-
mic working. A higher value of this factor would normally mean that we intend
to get large changes in step size. Hence the algorithm makes rapid changes
in step size per iteration and in the process quickly goes to attain the global
trends. This is unlike the case with smaller value of change in step size where
the step size behaves constant in nature and behaves as per the set step
size. Here we make specific strategy that is more or less passive in nature.
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This has an advantage of the algorithm able to perform well with larger com-
putation time if suitable value of step size can be guessed. The increase in
generation follows similar trends.

6 RESULTS

The algorithm was implemented and tested using MATLAB platform.
The algorithm made the master EA. The slave ESs was taken by the imple-
mentation of CMA-ES available at (Hansen 2008). The parameters of the
slave ES were passed by the master EA in its execution.

For the purpose of testing we used 11 different test functions used in
literature (Garai and Chaudhuri 2007, Shi et al 2005). These functions along
with the ranges and optima points are given in table 1. Each of these was
executed and analyzed separately. The value of the parameters was fixed
same for all these functions. All simulations were made on a 4 GB RAM, 3.0
3.0 GHz Core 2 Duo processor. The parameters used for the simulations
were 15 master generations. The mutation rate was fixed as 0.03 and c as
0.8. The initial number of iterations of the slave ES was 2500 which could
increase by 25%. The step size could vary from an initial of 0.1 and increase
by 0.7. All simulations took 2 to 4 seconds running time as per the set param-
eters except the last function (F11) which took approximately 5 to 7 seconds
for the different dimensions.

We used Conventional CMA-ES, Particle Swarm Optimization (PSO)
and standard Genetic Algorithm (GA) to compare the proposed algorithms.
All simulations were carried out 20 times. The parameters of these algo-
rithms were kept following the best practices at the same time keeping the
runtime of all the algorithms similar. Step size of conventional CMA-ES was
fixed to 0.5 and the generation was fixed to 55000. The mutation rate of GA
was fixed to 0.03 and crossover was fixed to 0.7. Individuals and generation
could vary from 600 to 800 and 1500 to 7500 respectively for various prob-
lems. This meant a very large number of populations as generations due to
low overheads of these algorithms. The means and standard deviation of the
results obtained from the simulation results along with number of individual
and generations for proposed algorithm is given in Table 2. The table also
lists the points of optima in the fitness space as recorded with the best run.

Table 2 showcases the performances of the proposed algorithms com-
pared to standard CMA-ES, GA and PSO. The 11 functions given to the algo-
rithm to optimize represent a range of simple to complex functions. We sepa-
rately discuss the results in separate heads of simple and complex functions.
The functions in table 1 numbered F1 to F9 are relatively simple functions
with limited dimensionalities or simpler fitness landscape. These functions
were given to the various algorithms to have a clearer comparison on the
general functions between the three algorithms. Looking at the results we can
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S. 
No. 

Function Dimen
sion 

Range Minima 

F1 

  

2 -2 ≤ x1, x2 ≤ 2 3 

F2 

 

2 -10 ≤ x1, x2 ≤ 10 0  

F3  2 -2 ≤ x1, x2 ≤ 2 0  
F4 

 

4 -2 ≤ xi ≤ 2  0  

F5 

 

6 -1 ≤ xi ≤ 1  0  

F6 

 

10 -1 ≤ xi ≤ 1  -10  

F7 

 

3 -10 ≤ xi ≤ 10 -300  

F8 

 

5 -1 ≤ xi ≤ 1  -8.30 

F9 

 

4 -10 ≤ xi ≤ 10  -4. 

F10   2 -5 ≤ xi ≤ 5  -
1.0316
28 

F11 

 

5, 8, 
12 

-10 ≤ xi ≤ 10  0.0 

 

clearly see that all the 4 algorithms were easily able to optimize these func-
tions. The optimal values were significant in regard to the execution time
which was intentionally kept small to judge the real-time performance in sim-
pler functions. Function F1 somehow did not show a good performance in the
use of GA where the GA sometimes got trapped in local minima correspond-
ing to 83 and 839 at some of the runs. In most cases however, the GA could
converge to global minima in F1.
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* At a few runs the algorithm was trapped in the minima corresponding to
value 839 and 30, #, At a few runs the algorithm was trapped in the minima
corresponding to value -0.21546 and 2.10425 $, At a few runs the algorithm
was trapped in the minima corresponding to value 9.41

Table 2: Comparative analysis of working of the proposed algorithm with
GA, PSO and CMA-ES on the objective functions

Table 3: Comparative analysis of working of the proposed algorithm with
CMA-ES on the rastrigin's functions

The scenario keeps changing as we start increasing the complexity.
This is when the proposed algorithm starts depicting useful characteristics as
while the other algorithms start facing problems. This was when we gave the
inputs F10 and F11 with the dimensionalities of 5, 8 and 12. The proposed
algorithm was able to generate optimal solutions in all the scenarios. The GA
completely failed to find optimal solutions in these inputs. For F10 the GA
could do reasonably well when it got optimal values at most of the runs, with

S. No. Dimensionality Proposed 
Algorithm 

CMA-ES 

1 1  0.0000 0.3980 
2 2 0.0000 1.04472 
3 5  0.4477 5.72099 
4 10  3.2903 14.2278 
5 15  6.4273 18.0584 

S. No. Optimal 
Value 

Proposed 
Algorithm 

GA PSO CMA-ES 

F1 3  3.0000 142.0500* 3.0000 3.0000 
F2 0  0.0000 0.0000 0.0000 0.0000 
F3 0  0.0000 0.0000 0.0000 0.0000 
F4 0  0.0000 0.0000 0.0002 0.0000 
F5 0  0.0000 0.0000 0.0000 0.0000 
F6 -10  -10.0000 -10.0000 -10.0000 -10.0000 
F7 -300  -300.0000 -269.4620 -299.917 -300.0000 
F8 -8.2436 -8.2436 -8.24361 -8.2436 -8.2436 
F9 -4 -4.0000 -4.0000 -4.0000 -4.0000 
F10 -1.0316 -1.0316 -0.1123# -1.0316 -1.0316 

F11(i) 
(ii) 
(iii) 

0 
0 
0 

0.0000 
0.0000 
0.0000 

-0.9572$ 

6.5080 
31.3468 

0.0146 
0.07240 

1.0511 

0.0000 
0.0000 
0.0000 

 



non-optimal solutions at few runs. Similar was the case with the run of F11
with a dimensionality of 5. The optimal value was fetched most of the times
with a few non-optimal solutions. However, the optimality was very poor for
the other runs of F11. The PSO behaved decent with F10 and gave good
solution at par with the proposed algorithm. However the scenario with F11
was different. The optimality was fine for the first run with dimensionality of 5,
but kept deteriorating. PSO lost to the proposed algorithm in higher dimen-
sions of 5 and 12. In dimensionality of 12, it mostly failed to give the correct
solutions. The CMA-ES gave very good results that were at par with the pro-
posed algorithm as compared to all the scenarios presented.

In order to effectively compare the proposed algorithm with CMA-ES
we use another function that represents a much more complex landscape
than the above presented algorithms. This is the rastringin's function whose
equation is given by (12).

Figure 4: Fitness landscape (in 2 dimensions) of Rastrigin's function

(12)

In order to visually analyze the complexity of the function we draw the
rastringin's function in 2-dimensions given in figure 4. This forms the fitness
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landscape over which the algorithms work and find the optima. It may again
be seen that this extended over multiple dimensions pose a very complex
problem because of which many algorithms fail.

The function was used in a domain of -10 to 10 for all axes. The con-
ventional CMA-ES generations were kept as 200000 for these runs which
was the only change made from the previous settings. The proposed algo-
rithm had same settings from the previous run. The simulations took around
7 seconds which was kept equal for both algorithms. Table 3 summarizes the
results for various dimensions (n) of the function. It may be clearly seen that
initially the performance of the two algorithms were somewhat at par with
each other with decent performances. But as we kept increasing the dimen-
sionality which denotes complexity, the proposed algorithm kept exceeding
the conventional CMA-ES in optimality.

Based on the simulations, it may be extrapolated that all algorithms
would pose problems of high complexity as we keep increasing the dimen-
sionality. However, ES, GA and PSO in higher dimensionality lag behind the
proposed algorithm. Continuing the simulation at higher dimensions would
make the difference even larger. Many of the real life applications like evolu-
tion of ANN (Yao 1993) is a highly dimensional problem that takes a lot of
time. At such high complexities, it may easily be generalized that the pro-
posed algorithm would serve better.

7 CONCLUSIONS

In this work a hierarchical implementation was followed consisting of
master and slave. The slave was a simple instance of CMA-ES that helped in
optimization in the allocated space in the fitness landscape. The master con-
sisted of an evolutionary technique to control the slave algorithm. This was to
fix the parameters of the slave ES and to coordinate the various instances of
ESs running in parallel. The slave ES helped in convergence to some local
minima. The master EA helped in addition of global traits to the entire algo-
rithm as the algorithm proceeds. In this manner we get a contrast of both
global and local characteristics. Not only the algorithm is able to attain the
global optima, but it is able to give the optimal outputs to even complex prob-
lems presented in finite amount of time. The master EA was programmed
with special evolutionary operators that aid in the generation of individuals
that are able to further improve themselves in the further ES runs as per the
strategy of the master EA. This is a unique property of the algorithm that can
be controlled by the discussed parameters to maintain tradeoffs between time
and local and global optima. The algorithm is especially designed for the
fitness landscapes that are spread across multiple dimensions and have
multiple modalities that make the optimization task very difficult. The pro-
posed algorithm is able to perform well while most conventional algorithms
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fail due to the sensitive nature of the algorithm and converge at some other
point than the optima.

The testing of the algorithm was done using the benchmark functions
available in literature (Garai and Chaudhuri 2007; Shi et al 2005). These
functions ranged in their complexity and dimensionality. We tested the perfor-
mance of the algorithm in comparison to the conventional ES, GA and PSO.
The results revealed that the conventional ES, GA and PSO were able to give
a good performance in most of the objective functions.

The proposed algorithm gave a decent performance to complex func-
tions. The real scalability test of the proposed algorithm lies in its use in most
real life complex applications. These applications present a fitness landscape
that is much more complex than the objective functions used. The work of
testing and comparing the proposed algorithm in these domains may be done
in future. The algorithm further makes an attempt to use the global EA as a
means of parameter setting of the local ES. This is a much complex relation-
ship between parameters that require a much formal modelling and study.
The improvement in this segment may have a deep impact on the algorithmic
performance. Another important aspect of the algorithm is its tradeoff be-
tween the local and global characteristics. While we present many param-
eters to adapt the algorithm to any of these characteristics, a formal study in
various specific scenarios and runtimes may be conducted in future.
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