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Abstract 

Malware attacks have become increasingly sophisticated and widespread, posing a significant 

threat to global cybersecurity. To address this challenge, effective malware detection methods 

are crucial for identifying and mitigating potential threats. This research uses two machine 

learning models, Convolutional Neural Networks (CNN) and Random Forest (RF), to analyze 

and detect malware. The study aims to improve malware detection accuracy, minimize false 

positives, and enhance model efficiency. We implemented both models using a publicly 

available malware dataset and conducted a comparative analysis to evaluate their 

performance. CNN was leveraged for its feature extraction and pattern recognition strength, 

while RF was selected for its robustness and interpretability in decision-making. The results 

demonstrated that CNN achieved high precision in identifying complex patterns, while RF 

excelled in balancing accuracy and computational efficiency. This analysis provides valuable 

insights into the strengths and limitations of these models, contributing to the development 

of more effective malware detection systems. All experiments and analyses were conducted 

using Python and relevant machine-learning libraries in a controlled computational 

environment. 

Keywords: Machine Learning, Malware Analysis, Cybersecurity, Convolutional Neural 

Networks, Random Forest, Supervised Learning, Threat Detection, Feature Extraction, 

Comparative Study, Python 

Introduction 

Malware poses a persistent and evolving threat to cybersecurity, rendering traditional detection methods 

such as signature-based and heuristic analysis insufficient against sophisticated and zero-day attacks 

(Smith et al., 2022). The increasing complexity of malware necessitates adaptive detection techniques 

capable of real-time threat identification. Machine learning (ML) offers a dynamic approach by analyzing 

large datasets and detecting patterns indicative of malicious activity (Brown et al., 2023). 

This study investigates the effectiveness of Convolutional Neural Networks (CNNs) and Random Forest 

(RF) models in malware detection. CNNs, known for their pattern recognition capabilities, are evaluated 

against RF’s interpretability and classification efficiency (Green et al., 2023). Using a publicly available 

malware dataset, we assess these models based on accuracy, precision, and recall to determine their 
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strengths, limitations, and potential synergies. The findings contribute to advancing ML-driven 

cybersecurity solutions and optimizing threat detection and mitigation strategies. 

Evolution of Malware Detection: From Traditional Techniques to Machine Learning 

Models 

Traditional malware detection relies on signature-based and heuristic methods, which compare files 

against known malware signatures or analyze suspicious behaviors. While effective against previously 

identified threats, these approaches struggle with zero-day attacks and polymorphic malware (Anderson, 

2022). 

Machine learning (ML) addresses these limitations by dynamically identifying known and novel malware 

variants. Supervised learning, particularly Convolutional Neural Networks (CNNs) and Random Forests 

(RFs), has shown significant promise in malware classification. CNNs, traditionally used in image 

processing, analyze malware binaries as visual representations, detecting complex patterns. RF, an 

ensemble-based model, offers robust classification with high interpretability (Djenna et al., 2023). 

The integration of ML in malware detection has enhanced threat identification by reducing reliance on 

manual updates and adapting to evolving attack strategies. This shift represents a critical advancement in 

cybersecurity, improving accuracy, efficiency, and adaptability in combating modern threats. 

Case Studies, Comparative Analysis, and Challenges  

Real-world applications highlight the effectiveness of machine learning in malware detection. The 

Microsoft Malware Classification Challenge demonstrated the strengths of Convolutional Neural 

Networks (CNNs) in pattern recognition and Random Forests (RFs) in interpretability. Cylance’s 

AI-based approach further showcased ML’s ability to detect malware without signatures by analyzing 

behavioral patterns (Blackberry Cylance, 2019). At the same time, Google’s VirusTotal integrates ML for 

real-time analysis of suspicious files and URLs, addressing threats like polymorphic malware (VirusTotal, 

2025). 

Comparative studies reinforce these findings. The 2018 Tabular EMBER Dataset, widely used in malware 

research, has been the basis of numerous evaluations comparing deep learning and traditional machine 

learning approaches. One notable study by Gale and Steele (2020) was selected due to its rigorous 

methodology and clear contrast between model performances. It was identified by reviewing works that 

directly benchmarked traditional models against neural networks using standardized datasets. Their 

analysis revealed that a Random Forest (RF) classifier achieved an accuracy of 92.03% and an AUC of 

0.979, significantly outperforming a neural network’s 62.29% accuracy and 0.615 AUC. Using a randomly 

selected subset of 50,000 entries from the EMBER dataset and default hyperparameters from the 

Scikit-learn library, their study highlighted that deep learning does not inherently offer superior 

results-emphasizing the critical role of appropriate model selection in malware detection. 

Table 1 Comparative Analysis of Previous Machine Learning Techniques 

Study Model Precision Recall AUC Accuracy 

(Gale & Steele, 

2020) 

Random 

Forest 
0.93 0.92 0.98 0.92 

Neural 

Network 
0.75 0.69 0.62 0.62 

Research Methodology   

This research analyzes genuine and malicious activities using Random Forest (RF) and Convolutional 

Neural Networks (CNNs) based on their malware detection effectiveness using precision, recall, F1 score, 
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ROC AUC, and accuracy evaluation metrics. Random Forest was selected due to its strong performance in 

past research, while CNN was chosen after a standard Neural Network (NN) was initially tested but 

performed poorly on the EMBER 2018 dataset. With that being said, the evaluation metrics: (1) Precision, 

which is the percentage of the correct positive predictions out of all the positive predictions made by a 

given model; (2) Recall, the percentage of true positives that the model correctly found out of all the actual 

positives; the (3) F1 Score, which is a combination of the precision and recall values into a single number, 

is a harmonic mean of both results that is useful when the false positives and negatives of a given model 

must be considered equally; the (4) ROC - AUC is a graphical metric used to evaluate how models 

distinguish between positive and negative classes, like, in this case, whether a file contains malware or 

not; and (5) Accuracy, which is the overall percentage of correct predictions made by a given model, these 

were to present a more concrete and accurate picture on the models performances. The alternative, which 

is using Accuracy, does not consider factors of the models, like the false positives and negatives. 

Figure 1 outlines the complete workflow for training and evaluating machine learning models, focusing on 

2D CNN and Random Forest. The process begins with dataset preprocessing, followed by data splitting 

(80% training, 20% testing). The training phase is divided into two parallel paths: training the 2D CNN 

and Random Forest models, each producing a trained model. These models are then tested, and their 

results undergo evaluation to determine malware detection accuracy. 

 

Figure 1 ML Workflow for Malware Detection using CNN (2D) and Random Forest models 

Dataset and Feature Analysis 
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The EMBER 2018 dataset was selected for this study due to its widespread adoption in academic and 

industry malware research, its open availability, and its balanced composition of benign and malicious 

Windows Portable Executable (PE) files. Unlike proprietary or less-documented alternatives such as 

VirusShare or Malicia, EMBER offers well-structured, labeled data and a comprehensive set of 

pre-extracted features—making it ideal for benchmarking machine learning models in malware detection. 

Each sample in the dataset is described by several core features that capture the structural and statistical 

properties of PE files, including Histogram, ByteEntropy, Sections, Imports, Exports, Header, General, 

and Strings. As outlined by Anderson and Roth (2018), these features are divided into two categories: 

parsed and format-agnostic. Parsed features include: (1) General—file size and basic PE header data, such 

as virtual size, number of imported/exported functions, and presence of a debug section; (2) 

Header—COFF header fields like timestamp, target machine, and DLL characteristics; (3) 

Imports—function information per library; (4) Exports—function information similarly organized; and (5) 

Sections—details on each section’s name, size, entropy, virtual size, and section flags. Format-agnostic 

features are: (1) Histogram—256-byte frequency counts; (2) ByteEntropy—entropy estimates via joint 

distribution p(H, X) where H is entropy and X is a byte value; and (3) Strings—statistics on printable 

strings between 0x20 and 0x7F of at least five characters in length, including counts and average lengths. 

Figure 2 illustrates histograms of selected features such as Entropy, Numstrings, AVLength, and 

Printables. The full dataset contains 1,200,000 entries, typically partitioned into 1,000,000 for training 

and 200,000 for testing, enabling scale and reproducibility in model evaluation. 

 

 

Figure 2 Histograms of features (entropy, numstrings, avlength, printables), showing their 

distributions. 

EMBER 2018 Dataset Data Processing, Feature Extraction, and Feature Selection 

The dataset was split into 80% training and 20% testing, following best practices (Gholamy et al., 2018) to 

handle overfitting problems. The training data was used to learn model parameters, while the testing data 

assessed accuracy and robustness. Studies suggest that this data division achieves optimal performance by 

balancing model learning and evaluation reliability. 

Due to the characteristics of the EMBER dataset and the nature of the Random Forest (RF) model, 

specific preprocessing guidelines and feature extraction recommendations were followed to enhance 

model performance and maintain consistency. In particular, the work of Saxe and Berlin (2015) 

emphasized the value of combining parsed and format-agnostic features for static malware detection, 

while Roth (2022) provided implementation guidance for deriving high-dimensional feature sets from PE 

files. Additionally, Akhtar and Feng (2023) highlighted practical considerations for scaling large datasets 

without compromising feature integrity. These informed the approach used in this study, which expanded 

the original EMBER dataset from its initial two types of features to 2,350 features—representing a 

29,275% increase. This expansion significantly increased computational demands, which led to a decision 

not to apply further feature selection for the RF model due to a limitation in Random Access Memory 

(RAM). A subset of these expanded features is shown in the figure below. 
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Figure 3 Feature Importances of Expanded EMBER 2018 Features for Random Forest 

For the Convolutional Neural Network (CNN) model, feature selection was manually defined by selecting 

a fixed subset of features: histogram, byteentropy, numstrings, avlength, size, and vsize. The histogram 

and byteentropy features were stacked and reshaped into 32×16 grayscale grids to serve as 2D input for 

the CNN. Feature values were normalized to the [0,1] range. No automated feature selection methods 

were applied, as the CNN architecture extracts relevant patterns through its convolutional layers during 

training. 

Model Selection and Training 

The Random Forest model was selected for its efficiency in handling high-dimensional data and its ability 

to aggregate multiple decision trees for robust predictions (Breiman, 2001). Following the data 

preprocessing and feature extraction practices of Mirza (2009), Raman (2012), Saxe and Berlin (2015), 

Gale and Steele (2020), Roth (2022), and Akhtar and Feng (2023), like the conversion of the ByteEntropy 

and Histogram feature histograms to numpy arrays of 256 elements, representing 256 bits, and the 

acquisition of the size, virtual size and names of the sections in the PE files, to name a few of the things 

that were done, on the EMBER 2018 Dataset, as well as the preliminary results of the model itself, it was 

concluded that feature selection was not needed, yet recommended. With that being said, with the 

nominal hyperparameters of RF and the processed dataset, when evaluating RF at testing, it was possible 

to acquire a ROC - AUC score of 0.99, prompting for overfitting analysis, as discussed in the next section. 

The Convolutional Neural Network (CNN) model was selected for its ability to extract spatial and 

hierarchical patterns from structured data, making it well-suited for malware detection (LeCun et al., 

2015). The convolution operation, a fundamental component of CNNs, enables the model to identify 

complex structures by applying a sliding kernel over the input feature map. This operation computes a 

weighted sum of local regions, capturing essential patterns such as edges and textures that distinguish 

malware characteristics. The mathematical formulation of the convolution process is given by: 

The convolution (cross-correlation) operation equation is given by: 

 𝑆(𝑖, 𝑗) =
𝑚
∑

𝑛
∑ 𝐼 (𝑖 + 𝑚,  𝑗 + 𝑛) · 𝐾(𝑚, 𝑛)

where I represents the input feature map, K is the convolutional kernel, and (m,n) are indices iterating 

over the kernel dimensions. The resulting output feature map S(i,j) enhances critical representations 

necessary for classification. Backpropagation was employed to optimize learning, adjust network weights 

using gradient descent, ensure efficient model convergence, and improve malware detection accuracy. 

Backpropagation optimizes the CNN by adjusting convolutional filter weights using gradient descent, 

ensuring efficient learning. The process computes the gradient of the loss function concerning each filter 

using the following equation. 
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The backpropagation for a convolution K equation is given by: 

 
∂𝐿

∂𝐾(𝑚,𝑛) =
𝑖,𝑗
∑ δ(𝑖, 𝑗) · 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛)

where δ(i,j) represents the gradient of the loss concerning the convolution output, and I(i+m,j+n) is the 

input feature map. The summation aggregates contributions from all spatial positions where the filter was 

applied, allowing the model to update weights effectively. This process enables the backpropagation of 

errors by leveraging the chain rule refining convolutional filters to enhance malware detection accuracy. 

Hyperparameter Tuning 

The Random Forest model was tuned by adjusting n_estimators to 200, max_depth to 12, 

min_samples_leaf to 15, min_samples_split to 20, bootstrap to True, and max_samples to 0.70. A fixed 

random_state of 42 was used for reproducibility. Tuning was guided by the manual process of training, 

testing, and visualizing the RF model results with learning curves. Like with feature selection, 

automatized hyperparameter tuning procedures, like Randomized Search and Gradient Search, were not 

undertaken due to memory limitations. 

For the CNN, the Adam optimizer was used with the default learning rate. Batch sizes of 32, 64, and 128 

were tested, and training was capped at 50 epochs with early stopping (patience = 5) based on validation 

loss. Dropout was applied after dense layers with rates of 0.4, 0.3, and 0.2, and batch normalization was 

used after each convolution. The model used (3,3) kernels with filter depths of 32 and 64, and the best 

weights were saved using a validation loss checkpoint. 

Model Evaluation 

The Random Forest (RF) and 2D Convolutional Neural Network (CNN) models were evaluated using 

standardized performance metrics, including accuracy, precision, recall, F1 score, and ROC-AUC. These 

metrics provided a comprehensive view of each model's classification capabilities, covering the 

correctness of predictions and the balance between false positives and false negatives. 

Visual evaluation methods were also incorporated to aid in model assessment. Confusion matrices were 

used to visualize true positives, true negatives, false positives, and false negatives, offering direct insight 

into misclassification patterns. Receiver Operating Characteristic (ROC) curves were generated to 

examine the trade-off between true positive rate and false positive rate across different decision 

thresholds, with the area under the curve (AUC) indicator of discriminative ability. 

For CNN, additional evaluation was conducted on the influence of batch size and training epochs. 

Multiple configurations were tested to observe how changes in these hyperparameters affected training 

stability and generalization. Feature scaling and reshaping techniques were also evaluated to ensure 

compatibility with the CNN architecture, which processes inputs as 2D representations. 

For RF, evaluation included model behavior under default settings and tuned hyperparameters. Visual 

tools such as linear learning curves were used to monitor for signs of overfitting. Preprocessing steps, 

including removing ambiguous labels and transforming input features, were assessed for their impact on 

model stability and performance consistency. 

Experiment Results 

This section presents the performance analysis of Random Forest (RF) and 2D Convolutional Neural 

Networks (CNNs) in malware detection using the EMBER dataset. The evaluation metrics 

comprehensively compare both models' effectiveness, including precision, recall, F1 score, ROC-AUC, and 

accuracy. Table 2 presents a detailed performance comparison of the Random Forest (RF) and 

Convolutional Neural Network (CNN) models across one million entries, broken down by class. The CNN 
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achieved consistently high performance across both classes, with precision, recall, and F1 scores all at or 

above 0.91. It reached 0.91 accuracy and a ROC-AUC of 0.97, demonstrating balanced and reliable 

classification for benign (class 0) and malware (class 1) samples. 

Random Forest also performed well, with a precision of 0.92 for benign files and 0.88 for malware. Its 

recall showed the opposite trend—higher for malware (0.93) but lower for benign files (0.87). This 

imbalance suggests that while RF effectively detects threats, it may occasionally misclassify benign files. 

Still, its overall accuracy remained strong at 0.90, and like CNN, it achieved a ROC-AUC of 0.97, 

indicating robust class separation. 

Although RF initially reached an AUC of 0.99 with default settings, further evaluation revealed this was 

due to overfitting the EMBER 2018 dataset. After removing ambiguous labels and applying tuning, the 

model's performance stabilized but slightly lagged behind CNN in consistency. CNN delivered uniform 

results across both classes, making it more dependable in high-stakes malware detection. Meanwhile, RF 

remains valuable for its interpretability and efficiency—especially when classifying structured data in less 

dynamic environments. 

Table 2 Performance Analysis of Studied Models (1M Entries) 

Model Class Precision Recall F1 Score ROC - AUC Accuracy 

 

Random Forest 

0 0.92 0.87 0.90 

0.97 0.90 

1 0.88 0.93 0.90 

Convolutional 

Neural Network 

0 0.92 0.91 0.91 

0.97 0.91 

1 0.91 0.92 0.91 

Figure 3 presents the confusion matrix for the Random Forest model, showcasing its classification 

performance. The model correctly classified 87,267 instances as benign files (True Negatives) and 92,510 

as malware (True Positives). However, it misclassified 12,733 instances as malware when they were 

benign (False Positives) and incorrectly identified 7,490 instances of malware as benign (False Negatives). 

These misclassifications highlight the trade-offs between precision and recall, showing that while the 

model performs well overall, there is still room for improvement in reducing false negatives. 

Figure 4 displays the Receiver Operating Characteristic (ROC) curve, which illustrates the trade-off 

between the True Positive Rate (TPR) and False Positive Rate (FPR) at various decision thresholds. The 

area under the curve (AUC) of 0.97 confirms that the Random Forest model can differentiate between 

malware and non-malware samples. These results demonstrate the model’s effectiveness in malware 

detection, providing a balance between accurate predictions and a manageable rate of false positives and 

negatives. 
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Figure 4 Confusion Matrix of Random 

Forest Results 

Figure 5 ROC Curve of Random Forest 

Results 

The 2D CNN was trained using batch sizes of 32, 64, and 128 over multiple epochs to evaluate how these 

parameters affect convergence and classification performance. Figure 5 shows the confusion matrix for 

classes 0 and 1, revealing strong predictive accuracy and class balance. The best-performing model 

reached a test accuracy of 91.13%, outperforming the Random Forest baseline. The CNN architecture 

included convolutional layers with 32 and 64 filters, followed by three fully connected layers with 256, 

128, and 64 neurons, each with dropout rates of 0.4, 0.3, and 0.2, respectively. This configuration helped 

reduce overfitting and improved the model’s generalization to unseen data. 

A batch size of 64 offered the best trade-off between convergence speed and stability. Smaller batches 

introduced high variance during training, while larger ones slowed learning. Accuracy gains diminished 

after 30 epochs, suggesting the model had reached optimal convergence. Figure 6 presents the ROC 

curves for class 0 and class 1, both achieving an AUC of 0.9718. This indicates a high true positive rate and 

a low false positive rate across thresholds, reinforcing the model's reliability in distinguishing between 

classes. The near-identical AUC values for both classes also reflect CNN's balanced performance. 

While the Random Forest model relied on structured, engineered features, the CNN extracted spatial and 

hierarchical representations from byte-level input. Although RF showed higher precision in some cases 

due to effective preprocessing, CNN demonstrated stronger adaptability to complex malware patterns, 

making it a powerful tool for large-scale detection tasks. 

                 

Figure 6 Confusion Matrix of CNN Results Figure 7 ROC Curve of CNN Results 

The study highlights the strengths and trade-offs of Convolutional Neural Networks and Random Forests 

in the context of malware detection. CNNs demonstrated superior capability in extracting deep patterns 

and handling unstructured or transformed data, making them well-suited for scenarios requiring 

sophisticated feature extraction. On the other hand, the Random Forest model excelled in handling 

structured data with interpretability and computational efficiency. 

The modifications applied to the Random Forest model, including dataset preprocessing, removal of 

ambiguous cases (-1), advanced data transformations, and hyperparameter tuning, significantly improved 

its performance. Achieving an accuracy of 90%, the RF model exhibited strong predictive capabilities, 

with F1 Scores of 90% for benign files and 90% for malware files. However, the RF model demonstrated a 

bias toward True Negative cases, indicating better performance in predicting non-malware files, as 

evidenced by the confusion matrix, only after finely tuned for overfitting. 
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A hybrid approach leveraging the strengths of both methods offers a promising avenue for malware 

detection. CNNs could extract high-level, meaningful features from raw data, while Random Forests could 

be employed for final classification, balancing robustness, interpretability, and computational efficiency. 

This combination could enhance malware detection systems, ensuring adaptability to evolving threats and 

providing actionable insights for cybersecurity professionals. 

Conclusions and Future Work 

Future work can explore the development of a hybrid model that combines the strengths of Convolutional 

Neural Networks (CNNs) and Random Forests (RF), leveraging CNNs for high-level automated feature 

extraction and RF for efficient, interpretable classification. While CNNs excel in learning hierarchical 

representations from raw data, they require large labeled datasets and are computationally 

intensive—making them better suited for scenarios where abundant training data is available and model 

accuracy is critical, such as advanced threat hunting or cloud-based malware analysis. Conversely, RF 

models perform well on structured, tabular data and are faster to train and evaluate, making them ideal 

for low-latency environments or endpoint-based threat detection with limited resources. Feature selection 

can also be applied to the RF portion of the experiment to identify which of the 2,350 features in the 

expanded dataset contribute most significantly to performance, potentially reducing computational 

overhead. Enhancing the dataset with diverse and emerging malware samples would improve 

generalizability while implementing robust defense mechanisms could mitigate adversarial attacks. 

Real-time performance evaluation—latency, throughput, and resource usage—is crucial for practical 

deployment. Additionally, improving CNN explainability through methods like Grad-CAM or SHAP could 

yield more actionable insights for analysts. Leveraging transfer learning with pre-trained CNNs may also 

reduce training time and improve accuracy in cases with limited labeled data. Together, these directions 

aim to build scalable, resilient, and interpretable malware detection systems capable of adapting to 

evolving threats. 
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