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Abstract

In today’s landscape of increasing electronic crime, network forensics plays a pivotal
role in digital investigations. It aids in understanding which systems to analyse and
as a supplement to support evidence found through more traditional computer-based
investigations. However, the nature and functionality of the existing Network Foren-
sic Analysis Tools (N-FATs) fall short compared to File System Forensic Analysis Tools
(FS-FATs) in providing usable data. Current N-FATs often present data at an overly
granular level, making it challenging for investigators to extract meaningful insights
in a timely manner. Moreover, the analysis tends to focus on IP addresses, which are
not synonymous with user identities, a point of significant interest to investigators.
This paper presents several experiments designed to create a novel N-FAT approach
that can identify users and understand how they are using network-based applica-
tions whilst the traffic remains encrypted. The experiments build upon the prior art
and investigate how effective this approach is in classifying users and their actions.
Utilising a in-house dataset composed of 50 million packets, the experiments three in-
cremental developments that assist in improving the performance. Building upon the
successful experiments, a proposed N-FAT interface is presented to illustrate the ease
at which investigators would be able ask relevant questions of user interactions. The
experiments profiled across 27 users, has yielded an average 93.3% True Positive Iden-
tification Rate (TPIR), with 41% of users experiencing 100% TPIR. Skype, Wikipedia
and Hotmail services achieved a notably high level of recognition performance. The
study has developed and evaluated an approach to analyse encrypted network traffic
more effectively through the modelling of network traffic and to subsequently visu-
alise these interactions through a novel network forensic analysis tool.

Keywords: Network forensics; behaviour profiling; user identification; biometrics; network
metadata; incident response.

1 Introduction

Digital forensics has become pivotal in investigating cyber and computer-assisted crimes,
with a historical focus on computer systems and File-System Forensic Analysis Tools (FS-
FATs) and their accompanying application-level parsers. However, the recent surge in
smartphone popularity has also led to the prominence of mobile adaptations of these tools.
While these solutions have demonstrated success, evolving technology, the dynamic threat
landscape, and the emergence of anti-forensic tactics have underscored the increasing sig-
nificance of network forensics, which stands as an independent and autonomous source of
evidence beyond the reach of adversaries Hasanabadi et al. (2020).
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Existing Network Forensic Analysis Tools (N-FATs) like Wireshark and Xplico have pri-
marily served as network protocol analysers for administrators, offering limited forensic
capabilities Khan et al. (2016). These tools operate at a low network packet level, hindering
investigators’ ability to ask high-level questions in a cognitively simple and timely manner
due to the sheer volume of network data, making sifting through packets time-consuming
Alotibi et al. (2016). Furthermore, these tools often fail to manage and handle the data in a
manner that investigators would expect.

Therefore, this paper proposes an N-FAT tailored for investigations focusing on suspects,
addressing key questions about their activities, interactions, and associates. This paper
leverages user interactions with network-based applications to identify users and provide
high-level network data for rapid, meaningful analysis. The main contribution of the N-
FAT includes a series of experiments that are designed to enable investigators to search
encrypted network traffic based on users and applications rather than Internet Protocol
(IP) addresses. Having established the feasibility of the approach, the study discusses how
this understanding of network traffic can then be utilised by investigators to more easily
understand what has happened, by whom and when.

The subsequent sections of the paper are structured as follows: Section 2 presents the re-
lated literature, emphasising limitations within existing approaches. Section 3 presents the
experimental methodology, while Section 4 provides the experimental results. Section 5
discusses the utility of the approach and how this can be incorporated into an N-FAT. Fi-
nally, Section 6 concludes the paper and outlines future research directions.

2 Analysis of the Prior Art

This section will include a review aimed at conducting an analysis of the prior art. It will
serve as a foundation for comprehending the concepts necessary to appreciate the novel
contribution of this research.

2.1 Packet-based and Flow-based Methods

Various methods have been developed to detect, monitor, understand, or prevent network-
related incidents and attacks. These approaches primarily operate using two methods
for examining network data: packet-based analysis, also known as Deep Packet Inspec-
tion (DPI), which examines the contents of IP packets to identify data and detect threats,
and flow-based analysis, which utilises IP flows to summarise related packets with shared
properties, including timestamps, IP addresses, port numbers, packet count, size, and traf-
fic type.

Table 1 presents an overview of various N-FATs, delineating their distinct roles in the
surveillance and examination of network traffic. Predominantly, these tools excel in cap-
turing, monitoring, reconstructing, detecting, and analysing network-related incidents.
Notably, tools like Wireshark and TCPdump possess the capability to decrypt traffic when
encryption keys are accessible (Wireshark, 2023; Tcpdump, 2023). However, it is imper-
ative to acknowledge that these tools are not inherently designed to breach encryption
or autonomously profile network traffic content. Furthermore, certain tools lack advanced
dashboard functionality, constraining investigators from implementing specific filters such
as timestamps, protocols, and IP addresses to generate comprehensive summary informa-
tion. In contrast, the proposed system is centred on identifying users and deciphering
their utilisation of network-based applications whilst maintaining the encrypted state of
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the traffic. This involves a meticulous examination of metadata, packet sizes, timing, and
endpoints, circumventing the need to access the actual content of the packets.

Table 1: Existing Network Forensics Tools
Tool Name

Analytical
License

Graphical
Main Feature(s)

Decryption
Approach Interface Capabilities

Nagios Flow Free Yes Monitoring and alerting system Incapable
NetworkMiner Packet Required Yes Examine, reconstruct, and visualise network sessions Incapable
OpenNMS Flow Free Yes Network performance monitoring Incapable
Pandora FMS Flow Free Yes Comprehensive monitoring solution Incapable
Pyflag Packet Free Yes Network traffic analysis Limited capabilities
Splunk Flow Required Yes Data collection and analysis Incapable
Tcpdump Packet Free No Network traffic capture and analysis Requires keys
Wi-Fi Network Monitor Flow Free Yes Wireless network monitoring Incapable
WirelessNetView Flow Free Yes Wireless network monitoring Incapable
Wireshark Packet Free Yes Network traffic capture and analysis Requires keys
Xplico Flow Free Yes Internet traffic extraction and reconstruction Requires keys

Table 2: Examples of Existing Network Monitoring Studies
Reference Approach Applications Performance
Ahmed & Lhee (2011) Packet-based Malware Detection 4.69% false negative rate, 2.53% false positive rate
Al-Bataineh & White (2012) Packet-based Data Exfiltration Detection 99.97% detection rate on HTTP traffic
He et al. (2014) Packet-based Data Exfiltration Detection 90% detection rate, less than 1% false positives
Parvat & Chandra (2015) Packet-based IDS 98.5% correct classification rate
Boukhtouta et al. (2016) Packet-based Malware Classification 99% precision, less than 1% false positives
Stergiopoulos et al. (2018) Packet-based Malicious Traffic Detection 94% true positive detection rate
Tegeler et al. (2012) Flow-based Malware Detection 90% detection rate, 0.1% false positive rate
Hofstede et al. (2013) Flow-based Anomaly-based Network IDS 95% detection rate, 1% false positive rate
Stevanovic & Pedersen (2014) Flow-based Anomaly Detection Numerical values are not provided
Fernandes Jr et al. (2015) Flow-based IDS 99.4% detection rate, 0.6% false alarm rate
Taylor et al. (2016) Flow-based Applications Identification 99% accuracy rate in re-identifying profiled apps
Clarke et al. (2017) Flow-based User Identification Up to 90% recognition rates
Leroux et al. (2018) Hybrid Traffic Classification Numerical values are not provided
Meghdouri et al. (2020) Flow-based Anomaly Detection Numerical values are not provided

The studies in Table 2 showcase a diverse array of methodologies for analysing and se-
curing network traffic, predominantly concentrating on malware detection, classification,
data exfiltration detection, IDS, anomaly detection, traffic classification, botnet detection,
and application identification. The table also highlights the proficient performance of both
DPI-based and flow-based methods in detecting and classifying a wide spectrum of net-
work events. Although these studies employ diverse methodologies and pursue distinct
objectives, they collectively emphasise the necessity for advanced approaches to network
traffic analysis, especially in response to the growing prevalence of encryption. This body
of research highlights a notable trend in network forensics and traffic analysis. Studies
such as those by Ahmed & Lhee (2011), Al-Bataineh & White (2012), and He et al. (2014)
delve into the complexities of analysing network payloads and encrypted traffic, elucidat-
ing the challenges of accurately identifying and categorising data amidst encryption. The
necessity for sophisticated mechanisms to discern between different types of content and
the importance of statistical features and behaviour profiling in encrypted environments
are consistent threads.

The works of Parvat & Chandra (2015), Boukhtouta et al. (2016), Stergiopoulos et al. (2018),
Stevanovic & Pedersen (2014), and Tegeler et al. (2012) further reinforce the potential of
integrating machine learning techniques and heuristic-based methods in network traffic
analysis. Collectively, these studies demonstrate high precision in detecting and classify-
ing network activities, emphasising the effectiveness of data-driven approaches. More-
over, the integration of IDS directly into network infrastructure, as explored by Hofstede
et al. (2013), and the employment of neural networks and Principal Component Analy-
sis (PCA) for anomaly detection and traffic profiling, as seen in Stevanovic & Pedersen
(2014) and Abuadlla et al. (2014), represent significant strides towards real-time, accurate
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network monitoring and threat mitigation.

Despite the robust methodologies and significant detection accuracies presented in these
studies, a common limitation is their reliance on decryption or superficial analysis when
dealing with encrypted traffic. This constraint often leads to a trade-off between user pri-
vacy and analytical depth. The reviewed literature primarily offers insights into the type
and nature of network traffic, with less emphasis on understanding user behaviour and ap-
plication usage patterns in an encrypted environment. This gap underscores the necessity
for an advanced N-FAT approach that can delve deeper into encrypted traffic, providing
comprehensive insights without compromising encryption integrity. In light of these find-
ings, the proposed N-FAT approach in this study aims to fill a critical gap in the current
landscape of network forensics. While the reviewed literature and N-FATs predominantly
provide low-level information, the N-FAT approach seeks to transcend these boundaries.
It aims not only to identify users but also to understand their behaviour in network-based
applications without decrypting the traffic. This contribution is poised to address a piv-
otal need in network forensics, offering a nuanced, comprehensive tool for network traffic
analysis that respects the integrity of encryption while providing deep insights into user
behaviour and network usage.

2.2 Interactions and Behavioural Profiling

Compared to the mentioned techniques, Clarke et al. (2017) introduced a study demon-
strating the use of unique user interactions at the network level. These interactions allow
the identification of individual actions users perform on network-based applications, even
with encrypted traffic, without decryption or DPI. The study involved examining network
traces generated during interactions, enabling the identification of specific user actions
rather than just network signals. A dataset from 46 users over 60 days was used, con-
taining metadata like timestamps, IP addresses, port numbers, packet length, traffic type,
and flags. The approach employed a single Feed-Forward Multi-Layer Perceptron (FF-
MLP) neural network in identification mode, achieving a promising 90% recognition rate.
While promising, a single classifier used in identification mode will likely struggle to scale
appropriately and potentially require a large complex neural network with a subsequent
computational impact. To this end, this paper presents a series of further experiments to
develop the N-FAT approach as an enabling platform to aid the forensic investigation of
network data.

3 Identity and Service-Based Detection: Experimental Methodol-
ogy

A key contribution of this research is the ability to attribute interactions to individuals
rather than IP addresses. The evaluation aims to determine if these methods improve
recognition levels, compared to using a single classifier as in Clarke et al. (2017). While
the single classifier approach performed well, it would face scalability challenges with a
growing user population. As such, an alternative strategy explored was the use of n 2-class
classifiers addressing scalability and potentially providing better recognition granularity.
This formed the basis of the first experiment. Research in multibiometrics also indicates
performance improvements through fusion, particularly classification-level fusion Saeva-
nee et al. (2015), as shown in Figure 1 (and this formed the basis of the second experiment).

Whilst IP addresses are not static due to Dynamic Host Configuration Protocol (DHCP)
and ad hoc mobile devices connecting and leaving networks, within a short time frame
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Figure 1: A Fusion-based Approach to User Identification

they can be assumed to be static. The third experiment sought to investigate the impact
upon performance through applying this assumption of IP addresses over short time win-
dows (seconds to a few minutes). If the classifier confidently identifies a user from a
sample, it can infer that all IP traffic within a certain time window before and after that
sample is also from the same user. This algorithmic approach helps mitigate weak clas-
sification decisions. To maintain consistency with prior research and due to the absence
of more suitable datasets, an in-house dataset was employed Alotibi (2017). This dataset
comprised data collected from 27 users over two months. During this period, participants
were asked to use their computers normally, aiming to capture authentic user behaviour.
All network traffic was monitored, and IP header metadata was recorded. To calculate
error rates, users’ source IP addresses remained constant. Participants were instructed not
to share their systems during data collection to ensure the legitimate user’s application be-
haviours were captured. The dataset contains IP header information from over 140 million
packets.

Table 3: Experimental Dataset: Service Overview
Application Number of packets Number of Interactions Data Reduction % Number of Participants

YouTube 21,131,316 1,322,848 93.8 27
Facebook 5,727,953 386,741 93.3 27
Google 1,857,420 194,404 89.6 27
Twitter 747,584 71,403 90.5 27

Wikipedia 1,250,302 5,719 99.5 20
Hotmail 703,711 122,989 82.6 19
Dropbox 17,480,739 98,555 99.4 16

BBC 201,263 4,180 97.9 12
Skype 575,030 178,686 68.9 12

As in the previous study Clarke et al. (2017), application-level interactions were identified
among the monitored nine services for which interaction signatures had been previously
identified. Table 3 provides an overview of the dataset by service across the population,
while Table 4 breaks it down by user. Table 3 also illustrates the data reduction process,
reducing interactions from 50 million raw packets to 2.4 million interactions. This signifi-
cant reduction reduces the cognitive load for machine learning and investigators. Notably,
not all users used all nine applications, resulting in varying participation per application.

For the experiments, both individual and fusion classifiers employed the FF-MLP Neural
Network with a Levenberg-Marquardt backpropagation learning algorithm, 100 epochs, a
Tan-Sigmoid transfer function, and one hidden layer, with the neuron count varying be-
tween 10 and 30. The dataset was evenly split into training and test sets to ensure unbiased
performance evaluation. Each individual 2-class classifier was trained with one user serv-
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Table 4: Experimental Dataset: Individual User and Service
User ID BBC Dropbox Facebook Google Hotmail Skype Twitter Wikipedia Youtube Total

1 0 0 528 1898 0 0 266 40 7620 10352
2 654 6156 11068 3136 174 44 11494 232 50262 83220
3 28 0 3894 426 276 30 1504 164 22162 28484
4 0 21850 41252 15740 4404 0 1086 0 400000 484332
5 0 0 1110 17500 46 0 596 0 85356 104608
6 0 9196 386 2752 430 67528 218 0 28318 108828
7 108 0 4344 12590 36 0 3366 114 52550 73108
8 0 0 63104 3628 0 0 214 44 17404 84394
9 124 3164 68764 7248 10902 2922 9950 1384 200000 304458
10 0 0 2240 3904 3084 7698 1296 54 20050 38326
11 0 0 5350 4594 3162 1208 616 0 26284 41214
12 1630 540 7570 31616 2524 41010 7034 232 105336 197492
13 86 4976 16700 13454 0 0 1192 30 15050 51488
14 146 8900 1440 122 574 9058 1736 30 13346 35352
15 0 12416 43894 2200 46 0 9270 798 79914 148538
16 0 6134 662 860 62 0 106 228 1206 9258
17 0 0 150 992 0 0 38 168 1238 2586
18 278 4156 1672 16908 0 0 784 100 1622 25520
19 316 3978 3310 4892 25412 19282 636 214 23902 81942
20 0 170 22852 6626 32 0 1716 814 88798 121008
21 94 7654 242 3442 342 114 398 0 17390 29676
22 0 0 444 850 0 0 144 0 3876 5314
23 0 0 51642 1294 56 0 406 204 14712 68314
24 320 2204 1922 5006 58032 19986 768 674 16020 104932
25 0 358 1852 3962 0 0 322 0 11892 18386
26 0 0 24872 1320 0 0 322 42 12594 39150
27 28 6658 5460 27430 13330 9800 15910 68 40730 119414

ing as the authorised user, while all other users acted as impostors, following a standard
testing strategy. A threshold of 28 interactions per application per user was set to ensure a
minimum sample size for classification. After training, there were a total of 27 individual
2-class classifiers for the second and third experiments.

4 Experimental Results

The results of experiment one multi-classifier identification approach yielded average True
Positive Identification Rate (TPIR) of 50.2%, 64.5% and 71% for ranks 1, 3 and 5, respec-
tively, as shown in Table 5. In comparison, the single classifier approach by Clarke et
al. (2017) resulted in error rates of 47.5%, 60.5%, and 66% for the corresponding ranks.
Analysing individual performances, the highest rank 1 performance was achieved by par-
ticipant 27 with a TPIR of 88.5%. This performance increased to 92.8% within rank 5.
Conversely, the lowest-performing participant was participant number 22, with a rank 1
performance of 19%, which improved to 68.6% by rank 5. The primary goal of this identifi-
cation process is to prioritise traffic and reduce data volume for investigators, making rank
1 identification non-essential. These results highlight significant capabilities in achieving
this objective.

Table 5 also reveals fusion-based results (experiment two), demonstrating an average 10-
18% TPIR improvement compared to selecting the highest output value. Most users ex-
perienced enhanced TPIR performance across ranks 1, 3, and 5. When evaluating recog-
nition performance by services, Skype and Hotmail exhibited strong discrimination abil-
ities. Utilising the Fusion approach, TPIR exceeded 70% for all services except Dropbox
(Table 6). While participant numbers varied across services, no significant relationship
emerged in error rates among different participant groups.
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Table 5: TPIR Ranks and Fusion Results for Users
User ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Average

T
PI

R

R
an

k
1

(%
)

Fusion 50.5 64.4 55.4 80.5 45.9 61 47.6 70.5 82 51.7 65.4 72.3 60.1 50.7 67.8 40.5 31.4 66.9 55.7 64.1 50 36.3 55.7 79.2 47.2 63.2 90 59.4

Multi-Classifier 49 48.2 46.3 65.8 32.3 55.1 36.9 60.8 68.6 39.4 51.2 65.3 54.1 34.9 59.8 31.1 28.4 64.1 45.5 44.7 50.6 19.1 41 79.5 53.7 50.2 88.5 50.2

T
PI

R

R
an

k
3

(%
)

Fusion 59 73.9 68.3 89 64.3 71.9 60.3 75.9 89.4 69 78.1 82.4 71.2 64.6 85.3 65.5 43.9 80.3 71.5 74.5 69.1 72.3 70.5 87.3 55.1 68.6 95.6 72.4

Multi-Classfier 55.3 70.1 64.8 78.3 38 71.8 69.1 67.6 75.4 56.9 55.1 75 63.3 62.5 80.1 53.2 39.1 73.6 60.1 51.5 71.8 66.4 54.4 84.2 61.2 52.9 91.6 64.5

T
PI

R

R
an

k
5

(%
)

Fusion 66.9 79.8 81.2 90.7 69 77.9 70.2 78.9 92.8 74.6 84.2 85.4 82 69 88.2 71.4 46.3 89.7 77 86.4 79.3 80.9 73.3 94.1 60.2 72.4 98.6 78.5

Multi-Classifier 63.9 74.4 74.4 82.1 51.7 79.8 80.2 68.7 82.6 63.9 57.9 78.8 69.5 72.7 84.9 60.1 43.6 75.7 71.2 64.2 87 68.6 61.7 85.8 68.3 54.8 92.8 71

Table 6: Recognition Performance based upon Service

Application Name Number of Users
Rank 1 (%) Rank 3 (%) Rank 5 (%)

Fusion Standard Fusion Standard Fusion Standard
Skype 12 99.8 98.1 100 98.2 100 98.2

Hotmail 19 97.3 96.2 98.9 96.9 99.3 97
Facebook 27 83.4 66.7 87.6 70.8 88.6 71.9

BBC 12 83.1 81.8 93.2 92.5 97 95.4
Google 27 82.1 71.7 88.8 79.4 90.4 82.2

Wikipedia 20 72.7 66.9 85.8 83.6 90.3 89.2
Twitter 27 72.4 65.3 85 79.5 89.3 83.4

YouTube 27 71.4 62.8 84 74.8 87.9 78.9
Dropbox 16 66.6 57.1 79.3 73.9 84.5 82.8

The primary objective of the algorithm is to establish a ’proof of life’ and capture the tem-
porary IP addresses in use. Table 7 demonstrates the practical performance, showing that
an individual’s best service network traffic can be identified in 93% of cases on average
using fusion. Even the second and third services can be successfully classified in 83% and
69% of cases, respectively, serving as strong ’proof of life’ indicators.

Table 7: Best Service Recognition Performance
User ID

First Application Second Application Third Application
Fusion Multi-classifier Fusion Multi-classifier Fusion Multi-classifier

Name TPIR (%) Name TPIR (%) Name TPIR (%) Name TPIR (%) Name TPIR (%) Name TPIR (%)
1 Wiki. 100 Wiki. 100 Google 95.2 Google 95.2 YouTube 57.8 YouTube 50
2 Skype 94.1 Skype 94.1 BBC 75.5 BBC 74.6 Wiki. 74.1 Wiki. 74.1
3 Skype 100 Skype 100 Google 75.1 Hotmail 60.8 Twitter 74.6 Google 59.1
4 Google 93.5 Hotmail 91.8 Hotmail 91.9 Google 91.6 YouTube 89.9 YouTube 90.9
5 YouTube 82.2 YouTube 74.1 Google 80.1 Google 73.6 Hotmail 40.2 Hotmail 13
6 Skype 100 Skype 100 Hotmail 92 Google 89.1 Google 88.3 Hotmail 85.5
7 Google 86.7 Google 79.2 BBC 81.4 BBC 64.8 Wiki. 50 Wiki. 50
8 Wiki. 100 Wiki. 100 Facebook 90.6 Facebook 79.5 YouTube 61.3 YouTube 56.5
9 Skype 100 Skype 100 Hotmail 96.4 Hotmail 95 Wiki. 93.2 Wiki. 93
10 Skype 100 Hotmail 83 Hotmail 86.4 Skype 63.7 Google 65.7 Google 56.1
11 Hotmail 95 Hotmail 80.5 Skype 85.4 Skype 80.3 Facebook 71.1 Google 72.7
12 Skype 100 Skype 99.7 BBC 97.4 BBC 95 Google 85.8 Hotmail 80.2
13 Dropbox 89.5 Dropbox 80.9 Facebook 88.1 Google 75.3 Google 81.2 Facebook 72.7
14 Skype 100 Skype 100 Hotmail 72.4 Hotmail 62.3 Twitter 63 Dropbox 48.2
15 Facebook 89.3 Facebook 74.5 Dropbox 82.5 YouTube 71.1 YouTube 76.9 Dropbox 70.9
16 Wiki. 95.6 Wiki. 95.6 Google 71.1 Hotmail 35.4 YouTube 43.6 YouTube 28
17 Google 68.3 Google 59 Wiki. 57.1 Wiki. 52 YouTube 31.6 YouTube 30.6
18 Wiki. 98 Wiki. 98 BBC 86.3 BBC 82 Google 76.7 YouTube 67.2
19 Skype 99.4 Skype 99.4 Hotmail 97.5 Hotmail 95 BBC 70.8 BBC 61.7
20 Dropbox 100 Dropbox 75.2 Facebook 83.5 Facebook 73.9 Google 80.9 Google 63.7
21 Skype 100 Skype 100 Twitter 78.3 Hotmail 85.3 BBC 72.3 Twitter 79.3
22 Twitter 65.2 Twitter 43 Google 41.1 Google 29.4 YouTube 38.9 YouTube 4.2
23 Facebook 92.5 Facebook 75.5 Hotmail 75 Hotmail 71.4 Twitter 58.6 Twitter 58.6
24 Hotmail 100 Hotmail 100 Skype 100 Skype 100 BBC 84.5 BBC 91.8
25 Google 85.4 Google 80.8 Dropbox 75.9 Dropbox 75.9 YouTube 58.3 YouTube 51.1
26 Facebook 85.6 Wiki. 76.1 Google 72.4 Google 64.8 Wiki. 71.4 Facebook 62.4
27 Skype 100 Skype 100 Google 100 Google 100 YouTube 100 YouTube 100

Avg. 93.3 87.4 82.5 75 68.9 61.9

The final analysis examined the impact of utilising temporary IP addresses to group data
sent within defined time windows before and after them. Using the outcomes of the fu-
sion approach and rank 1 recognition, time windows of 30 seconds, 60 seconds, and 240
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seconds were sequentially tested. These time windows were chosen to minimise the likeli-
hood of IP reallocation, especially due to mobile devices being powered off. As displayed
in Table 8, employing timeline analysis increased the average performance from 59% to
70% with a 30-second time window. Although performance continued to improve with
larger time windows, reaching 73% with a 240-second window, the potential for IP reas-
signment and the limited performance gain beyond 30 seconds suggest that a 30-second
time window offers the optimal trade-off between performance and IP reassignment.

Table 8: User Recognition Performance using Timeline Analysis
User ID 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 Avg.

Fu
si

on
(%

)

TPIR Rank 1 50.5 64.4 55.4 80.5 45.9 61.0 47.6 70.5 82.0 51.7 65.4 72.3 60.1 50.7 67.8 40.5 31.4 66.9 55.7 64.1 50.0 36.3 55.7 79.2 47.2 63.2 90.0 59.4

Ti
m

el
in

e
A

na
ly

si
s

(%
)

30 Seconds 68.6 46.6 55.5 93.1 88.0 79.8 54.9 91.3 86.5 66.0 61.1 77.7 81.3 64.7 90.4 46.0 48.6 72.5 76.1 67.1 26.1 37.6 84.1 94.8 61.3 79.5 97.5 70.2

60 Seconds 69.6 47.2 56.6 94.0 88.7 79.8 54.9 92.1 86.9 67.4 62.7 80.1 83.1 65.4 91.7 46.1 48.6 74.3 77.2 67.4 26.1 38.2 85.5 94.8 62.6 81.1 97.6 71.1

240 Seconds 71 50.5 58.1 96.7 89.5 79.8 55.2 93.6 88.0 72.1 67.7 81.8 84.6 72.9 93.2 46.8 49.8 76.9 79.1 67.7 26.4 38.5 86.5 94.8 64.6 83.2 97.7 72.8

The evaluation results highlight the distinctiveness of user interactions, offering a reliable
means of user identification. Implementing a time window in this method would lead to
even higher recognition performance. Across all service usage, many participants achieve
recognition performance that significantly reduces the network data load for forensic in-
vestigators. With suitable interfaces facilitating in-depth exploration of interactions and
raw data, this approach promises substantial time and cognitive load reduction.

5 Discussion

This research serves as the basis for proposing an innovative user-focused N-FAT. It stems
from an analysis that identified essential requirements. These include: extracting valu-
able insights from encrypted network data to understand user activities within network-
based applications, analysing traffic from a user-centric viewpoint rather than just an IP
address, offering analysis flexibility from packets to interactions, and providing forensic
tools for higher-level data queries. Additionally, data visualisation aids in more reliable
data interpretation. These requirements collectively improve evidence identification from
vast low-level data, reduce investigator cognitive load in recognising relationships among
artefacts, and subsequently lower investigation time and costs. In line with established
FS-FAT principles and acknowledging the rising need for collaborative investigations, we
identified extra requirements, including comprehensive case management, robust authen-
tication and authorisation, platform-agnostic tools, centralised resources, and multi-user
capabilities. Utilising a web application via a private network enables investigators to ac-
cess and process cases using standard web browsers, reducing workstation computational
demands and shifting tasks to a scalable cloud-based infrastructure. This approach would
provide a more user-friendly, flexible, and cost-effective alternative to traditional infras-
tructure methods.

This visual representation offers insights into applications used by different users, facilitat-
ing the rapid detection of unusual usage patterns within an organisation. Figure 2 displays
a timeline analysis focused on a single user’s application usage. While user and interaction
identification may occasionally produce incorrect classifications, their application in the N-
FAT system aims to reduce data volume and prioritise investigator queries. For instance,
a query about a specific user activity at a certain time can lead to further investigation by
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pivoting on the resulting IP address. The flexibility of the visualisations allows for the
integration of additional tools into the system. For each query that is performed against
the data, the investigator would have the opportunity to bookmark the results should they
wish to. This is managed by the Reporting function, and an example is illustrated in Fig-
ure 3. These bookmarks contain the visualisation, a comments section for freeform notes
to be added by the investigator, the database queries utilised to generate the visualisation
and the filtering options applied to the data. The bookmarked data also includes the ex-
tracted raw data that the query is based upon. The raw data is provided because this is the
true source data that can be relied upon. The interactions and identification of users are
subject to error to confirmation of what is being seen in the visualisation is provided for
examination by all parties.

Figure 2: Timeline Analysis of User Interactions

Figure 3: Extract of the Case Report Entry

In comparison to existing N-FATs, this approach offers a graphical user interface that ex-
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plores data based upon interactions and users rather than low-level IP addresses. The
visualisations themselves provide the ability to interact with data objects in a flexible man-
ner whilst continuously maintaining a mapping back to the raw traffic. This should help
identify relevant relationships and do so in a timely fashion. The ability to perform this
analysis on completely encrypted traffic sets itself ahead of the current state of the art.

6 Conclusion

This study has introduced an innovative N-FAT dedicated to analysing and investigating
user interactions with network-based services. The presented approach is robust, flexible,
and extensible that demonstrates abstracted network data in a more usable and cognitively
manageable visualisation. Additional research is needed to automate the identification of
new interactions, potentially using a hybrid deterministic and probabilistic approach. Fur-
thermore, research should explore the nature of biometric templates used for user identi-
fication, particularly regarding their permanence and update frequency to reflect current
user behaviour. Finally, a comprehensive system evaluation by stakeholders is imperative,
with particular attention to interface design and the potential incorporation of supplemen-
tary functionality and forensic analyses.
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