
 1

Examination of crossover features in a Genetic
Algorithm towards applications in cybersecurity

Hugo J. Delgado-Martí
Polytechnic University of Puerto Rico

hugojdm@gmail.com

Alfredo Cruz PhD
Polytechnic University of Puerto Rico

alcruz@pupr.edu

Abstract

Genetic Algorithms offer the benefit of parallelism by comparing populations of solutions
and mimicking evolution in the survival of the fittest competition. Several applications of
genetic algorithms in cybersecurity have emerged in recent literature, from cryptanalysis
to IoT scheduling and network routing. GA has also been used in combinatorial
optimization and as SAT solvers. Experiments were conducted to compare crossover
features in a genetic algorithm SAT solver. Several new features were tested, such as age-
based survival, neighborhood-based fitness, and duplicate pruning. These features helped
maintain diversity while keeping convergence towards maximum fitness. Scaling the
fitness function values using the mean and standard deviation of the population’s fitness
improved selection pressure during roulette selection. This implementation is focused on
producing an efficient genetic algorithm SAT solver, which could be used in the
cryptanalysis of block ciphers.

Keywords: Genetic Algorithms; Evolutionary Computation; SAT Solver; Crossover; GASAT.

Introduction

Several important problems in cybersecurity require optimization, modeling, and simulation. The
computer scientist's task is to provide easy algorithms to find solutions in a reasonable amount of time,
given restricted computing resources. Evolutionary algorithms and genetic computation may be alternative
search methods for complex problems in computer science. Evolutionary computation stems from the
search for optimization algorithms inspired by biology, particularly the process of natural evolution (Eiben
& Smith, 2015, p. 13). Evolutionary and genetic algorithms can be interpreted as stochastic beam search
techniques, where the algorithm tries to find a solution using an objective function to compare solutions
(Russell et al., 2010, pp. 110–119) called the fitness function.

John Holland (1992) initially proposed Genetic Algorithms; in them, the Darwinian idea of survival
of the fittest inspires the construction of fitness functions to find the optimal solution to a problem. Genetics
has brought the idea that a phenotype, or visible characteristics of a species, is tied to its genotype, the
genetic code in DNA. In contrast, Genetic Algorithms represent the genes as bits or segments of code, while
the phenotype is the characteristics measured by its fitness. Genetic algorithms suit complex systems where
conflicting or interacting objectives may produce different solutions or outcomes.

Genetic Algorithms have found applications in “routing, scheduling, adaptive control, game
playing, cognitive modeling, transportation problems, the traveling salesman problem, optimal control
problems, database query optimization, etc.” (Michalewicz, 1996, p. 15). Recently, GAs have seen several
implementations in optimization related to physical security, for example, in Baraklı et al. (2023) genetic
algorithms were used for threat evaluation in the context of weapon assignment problems. Regarding
network design, genetic algorithms considered conflicting interests such as user demand, placement, and
routing of equipment and cables (Correia et al., 2023). Baushchert (2019) proposed using GA to find

Author: Delgado, Hugo J. and Cruz, Alfredo

 2

optimal solutions in constructing a 5G virtual network, which was later improved by an exact solution
search using mathematical programming.

Genetic Algorithms and Cybersecurity

Several recent applications of evolutionary algorithms in cybersecurity can be enumerated. Saeed
et al. (2023) showed that genetic algorithms improved energy and resource allocation in the problem of
Internet of Things (IoT) workflow scheduling. Their results outperformed standard algorithms in workflow
scheduling. Devecci et al. (2023) applied an evolutionary algorithm for intrusion detection in a low-power
lossy network of IoT devices. Yilmaz and Sen (2019) used grammatical evolution in the early detection of
botnets, obtaining better results than previous methods.

Block ciphers are used extensively in lightweight cryptography as authentication protocols.
Applications of Genetic Algorithms in cryptography could help improve cryptographic primitives and
protocols through cryptanalysis of block ciphers (Pavlenko et al., 2019; Tito-Corrioso et al., 2023).
Expressing the structure of the selected cryptographic implementation as a satisfiability problem (SAT) may
provide the context for evaluating the implementation using Genetic Algorithms. The knowledge about a
cipher, in combination with techniques such as guess-and-determine, is written into equations representing
the relation between ciphertext-plaintext pairs. Algebraic cryptanalysis, for example, describes the
structure and information about a cipher as a set of polynomial equations that can then be solved as a
satisfiability problem (Bard, 2009; Courtois et al., 2008; Pavlenko et al., 2019). It has proven an effective
method in the attack of lightweight block ciphers. Since algebraic equations representing a cipher can be
transformed into a Satisfiability problem, it can be fed to a Genetic Algorithm to find the key or the plaintext.

Figure 1 General flowchart of a Genetic Algorithm

Figure 1 represents a general overview of the steps in a Genetic Algorithm. Several options exist for
selection, recombination, mutation, and survival. In satisfiability problems, the individuals are bit strings
representing the true or false assignment to each variable in the equation.
Satisfiability and Genetic Algorithms

The full set of words of fixed size k using the Boolean alphabet is also called the hypercube of
dimension k. Formally represented as {0,1}! , (𝑘 ≥ 1)	for	𝑘 ∈ 𝑁, each word can also be called a vector of
length 𝑘 lying in the hypercube. Discrete functions that take such vectors as input are called Boolean
functions of arity k, where k represents the number of variables in the function. The combination of
conjunction, disjunction, and negation is a complete set of operators for representing these functions.
Respectively, these operators are represented by ∧,∨,¬. These symbols represent the logical operators AND,
OR, and NOT.

Conjunctive Normal Forms (CNF) are defined as a conjunction of clauses. Clauses are Boolean
functions consisting of disjunctions of literals without complementary pairs. A complimentary pair consists
of a variable and its negation. Therefore, a disjunction of a complementary pair is a tautology. Literals is
another term for the variables in the Boolean formula. A Boolean formula (see Equation 1) with at least one

Applications of genetic algorithms to cybersecurity.

 3

vector that produces a true output is called satisfiable; if no vector returns true, it is called unsatisfiable.
The problem of determining if a Boolean function has a satisfiable assignment is called the Boolean
Satisfiability Problem or SAT (Nilsson, 1998, pp. 25-35;217-238).

The SAT problem is NP-complete, and many computer science problems can be reduced to
satisfiability problems in polynomial time (Sipser, 2013, p. 304). Research has been conducted using SAT
solvers and Genetic Algorithms, proving their significance in many computer science and security areas.

A potential application of genetic algorithms as SAT solvers lies in algebraic cryptanalysis since it
represents knowledge about a cryptosystem as a set of polynomial equations under the Galois field of 2nd
order, which can be represented as SAT. Algebraic cryptanalysis has been effective against block ciphers
such as KeeLoq, an intelligent car key authentication protocol (Bard, 2009).

Methods

There is an indefinite number of specifications on applying the general idea behind a Genetic
Algorithm. First is the encoding mechanism; it establishes how to represent the individuals so the program
can successfully evolve, mutate, cross genes, and measure their fitness. The mixing number specifies the
number of parents from a generation to create offspring in the next generation. A selection process defines
the method of choosing the parents, which can be random or mediated by their fitness. During
recombination or mating, the genome from one parent is combined with another. The mutation rate
establishes how often random mutations will happen, which is necessary to prevent fast convergence.
Elitism is the method used to guarantee an increase in the total fitness of the population. At the same time,
a minimum threshold can be used to discard low-fitness sections of the population (Russell et al., 2010, p.
116).

Data: A set of Conjunctive Normal Form Clauses 𝜙,𝑀𝑎𝑥𝑓𝑙𝑖𝑝,𝑀𝑎𝑥𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠
Result: the best truth assignment to the 3-SAT formula
Begin

CreatePopulation(P)
𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 ← 0
While no 𝑋	 ∈ 𝑃 satisfies 𝜙 and 𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 < 𝑀𝑎𝑥𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 do

/* Selection */
𝑃" ← 𝑆𝑒𝑙𝑒𝑐𝑡(𝑃,𝑁𝑏𝐼𝑛𝑑)
Choose 𝑋, 𝑌 ∈ 𝑃"
/* Crossover */
𝑍 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑋, 𝑌)
/* Insertion condition of the child */
𝑃 ← 𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑍, 𝑃)
𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 ← 𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 + 1
If there exists 𝑋 ∈ 𝑃 satisfying 𝜙 then

Return the corresponding assignment.
Else

Return the best assignment found.

Algorithm 1 GASAT Algorithm (following Lardeux et al., 2006 without Taboo Search).

The fitness function is particularly special among the different constituents of a Genetic Algorithm
since it represents the population's requirements to adapt (Eiben & Smith, 2015, p. 30). The fitness function
assigns numerical values to the qualities of the individuals in the population such that the individuals can
be measured objectively. Nilsson (1998, pp. 59–60) describes the fitness function as the mathematical
landscape where population individuals reproduce. In the topographic analogy, individuals at higher
elevations have a higher chance of reproduction. Strategies are needed to maintain diversity within the
population until a satisfying solution is found. The approach proposed in this paper is to develop a genetic
algorithm for a SAT problem. A sample Genetic Algorithm presented by Lardeux et al (2006) is shown.

Author: Delgado, Hugo J. and Cruz, Alfredo

 4

In Algorithm 1 (see also Figure 1), the population P is created randomly as binary strings. The
population is tested using the SAT formula in CNF, and the number of true clauses is counted. The
individual's fitness is established by the number of satisfied clauses (TRUE). A population sample is chosen
for mating, to produce the offspring. A set of new individuals is produced using the crossover function where
the genome from both parents is mixed. The new generation is composed of a combination of parents and
their offspring. The program will continue until the maximum number of generations is reached or if
stagnation is detected by comparing the change in the average fitness in recent generations to the whole
evolution. The implementation presented in this paper used binary word representation for the individuals
with a word length of 10 bits. The CNF used to represent the SAT problem is presented in Equation 1:

𝐹(𝑋#$#%) = (¬𝑋& ∨ ¬𝑋' ∨ ¬𝑋(∨ 𝑋) ∨ ¬𝑋* ∨ 𝑋+ ∨ ¬𝑋, ∨ ¬𝑋-) ∧ (𝑋# ∨ 𝑋& ∨ 𝑋(∨ ¬𝑋) ∨ ¬𝑋* ∨ 𝑋,)
∧ (¬𝑋' ∨ ¬𝑋) ∨ ¬𝑋#%) ∧ (𝑋() ∧ (𝑋# ∨ 𝑋& ∨ ¬𝑋' ∨ 𝑋(∨ 𝑋* ∨ ¬𝑋+ ∨ ¬𝑋- ∨ 𝑋#%)
∧ (¬𝑋# ∨ ¬𝑋& ∨ ¬𝑋' ∨ ¬𝑋(∨ 𝑋) ∨ ¬𝑋* ∨ 𝑋+ ∨ ¬𝑋, ∨ ¬𝑋#%) ∧ (¬𝑋& ∨ ¬𝑋#%)
∧ (¬𝑋# ∨ 𝑋& ∨ ¬𝑋' ∨ 𝑋) ∨ 𝑋* ∨ 𝑋+ ∨ ¬𝑋, ∨ ¬𝑋- ∨ ¬𝑋#%) ∧ (𝑋& ∨ 𝑋#%)
∧ (𝑋# ∨ 𝑋' ∨ ¬𝑋) ∨ 𝑋* ∨ 𝑋+ ∨ ¬𝑋, ∨ 𝑋- ∨ 𝑋#%)
∧ (𝑋& ∨ ¬𝑋' ∨ ¬𝑋(∨ ¬𝑋) ∨ 𝑋* ∨ ¬𝑋+ ∨ ¬𝑋, ∨ 𝑋- ∨ 𝑋#%) ∧ (¬𝑋# ∨ ¬𝑋) ∨ ¬𝑋* ∨ 𝑋, ∨ 𝑋-)
∧ (𝑋#) ∧ (¬𝑋(∨ 𝑋- ∨ ¬𝑋#%) ∧ (¬𝑋# ∨ 𝑋' ∨ ¬𝑋(∨ ¬𝑋) ∨ ¬𝑋* ∨ 𝑋, ∨ ¬𝑋- ∨ ¬𝑋#%)
∧ (𝑋' ∨ 𝑋(∨ ¬𝑋- ∨ 𝑋#%) ∧ (¬𝑋# ∨ ¬𝑋& ∨ ¬𝑋' ∨ 𝑋) ∨ 𝑋+ ∨ 𝑋, ∨ 𝑋- ∨ ¬𝑋#%) ∧ (¬𝑋-)
∧ (¬𝑋& ∨ ¬𝑋) ∨ ¬𝑋* ∨ ¬𝑋- ∨ ¬𝑋#%) ∧ (¬𝑋# ∨ ¬𝑋' ∨ ¬𝑋+ ∨ 𝑋#%)	

Equation 1

This formula contains a total of 10 variables and 20 clauses. The function is satisfied if a given
variable assignment returns true on all 20 clauses. Each clause has between 1 to 9 variables present. No
variable is present more than once in each clause. The function has 1024 respective variable assignments,
and the genetic algorithm's task is to find satisfying solutions.

Roulette wheel selection (see Figure 2 and Algorithm 2) was chosen as the selection method for this
investigation. During roulette wheel selection, individuals are ranked by fitness, and a cumulative
probability distribution is calculated. First, the total sum of the fitness of the population is calculated. Then,
to calculate the cumulative fitness for each member of the population, their fitness is divided by the total
fitness and then added to the previous member's cumulative fitness. This method returns a cumulative
probability, ranging from 0 to 1 so that all members have a probability of being chosen. Each member will
then be assigned a probability range whose maximum is its cumulative probability and the minimum is the
previous member's cumulative fitness. Members with higher fitness have a broader range because their
fractional weight is larger; therefore, they have higher probabilities.

Figure 2 Random methods used during selection.

Applications of genetic algorithms to cybersecurity.

 5

In Figure 2 a random number between 0 and 1 is chosen and the genome with the cumulative value greater
than the random number is the selected individual for reproduction. In Algorithm 2 the selection method
is presented once the cumulative distribution has been calculated for all individuals. The roulette wheel
chooses individuals until the desired sample size is achieved using the crossover rate and the population
size.

Data: A population, 𝑃, a cumulative distribution, 𝐷, and a sample size 𝑆.
Result: A random sample, 𝑃"
Begin:

While 𝑃./01" < 𝑆 do:
Choose a random number, 𝑅

0 ≤ 𝑅 ≤ 𝑃./01
While 𝑅 < 𝐷[𝑖] do:	

𝑖 ← 𝑖 + 1
Add the element to the sample:

𝑃" ← 𝑃[𝑖]

Return: 𝑃"

Algorithm 2 Roulette Selection

Populations of 8, 16, and 32 random genomes were created before running the algorithm. For each
population size, the crossover rate was set to 80% or 100%, and mutation rates of 1/100 or 1/1000 were
tested. Several additional features were attempted as part of the experiments. The oldest individual from
each generation is removed after 10 consecutive iterations. This feature helps maintain diversity in the
population, although part of its genome may remain distributed among other individuals. Three crossover,
one-point, two-point, and uniform methods were compared (see Figure 3). In a one-point crossover, a single
reference point cuts each parent's genome to produce two offspring. In the two-point crossover, three
genome segments are shared between the two offspring, each having the beginning and end of one parent
and the middle genetic material of the other parent. In uniform crossover, a random template is chosen to
share genes from both parents. Each method produces two offspring from two parents. The experiments
were carried over 100 times and their averaged results are presented in Table 1.

Several experiments found that the diversity may stagnate after a few generations when the
algorithm falls into local maxima. To avoid premature convergence, duplicate offspring were pruned before
adding to the population during the survival phase. If the resulting population was greater than the desired
population size, smaller fitness individuals were removed; on the other hand, new random individuals were
added if the resulting population was smaller than the population size.

This implementation was programmed in Python version 3.11.7 and run in a Jupyter Notebook
running on MacOS Sonoma version 14.2.1. The system is a MacBook Pro 2 GHz Quad-Core Intel Core i5
with 16 GB 3733 MHz RAM.

Figure 3 The effect of one-point, two-point, and uniform crossovers on the parent-
offspring genomes.

Author: Delgado, Hugo J. and Cruz, Alfredo

 6

Results

Table 1 presents the results of the experiments. In the first column, the population number is
presented. This number represents the number of random members chosen at the beginning of the
algorithm. CX type refers to the type of crossover, either one-point, two-point, or uniform crossover, as
described in the previous section. The mutation rate indicates the probability that a given offspring will
mutate its genome before the next generation is chosen. CPU time is the number of seconds the algorithm
takes before stopping, either because the maximum number of generations is achieved or because the
moving average fitness is not changing significantly. The column marked generations indicates the average
generation during which the algorithm stopped. Notice that stagnation detection starts at the 500th
generation. The last column, Solutions, represents the average number of solutions with the given features
and parameters.

The results presented in Table 1 show that larger populations produce more results regardless of
other features but require longer running times. Using a population of 16 or 32 individuals, the 21 satisfying
solutions of the CNF were found soon after the 500th generation when the stagnation detection feature
began. A method must be devised to stop the algorithm in a real-case scenario where the number of
solutions is unknown. In a cryptanalytic scenario, finding at least one solution might be enough, so the
opposite case should also be asked: when should the algorithm stop if no solution is found?

The type of crossover seems to have little effect on the number of results or the CPU times. Since
crossover mixes the parents' genetic information, any reasonable combination of genes will produce a
reasonable combination for the offspring after crossover. This might not be the case in all CNFs because the
solution structure may require combinations that can be achieved with a particular crossover method. For
example, a two-point crossover may cut a specific section in the middle of a genome that improves a
solution, whereas a uniform or one-point crossover may not.

The crossover rate seems to be the dominant feature in these experiments; a higher crossover rate,
such as 80%, yields similar results in terms of solutions than a 60% rate but in a smaller CPU time. The
crossover rate, therefore, seems to be the dominant feature when the initial population is small (8) but has
less significance when the population is large (16, 32). The best result overall had 8 items in the initial
population, 1/100 mutation, and an 80% crossover rate.

(a) (b)

Figure 4 Sample progress curves.

In Figure 4, two sample progress curves show the average fitness per generation for a trial with an
initial population of 32 individuals, a crossover rate of 80%, and a one-point crossover. In (a), the mutation
rate was set to 0.01, while in (b), the mutation rate was kept at 0.001. The average fitness shows variability
because it combines the fitness of the best and worst members of the population in each generation. Due to
the random nature of the crossover points, the average may not always improve.

Applications of genetic algorithms to cybersecurity.

 7

Table 1 Comparison of results for different initial populations, crossover, and mutation

Initial

Population CX Type CX rate Mutation Rate CPU Time (s) Generations Solutions

8

1 point
0.80

1/100 0.295 501.15 20.89
1/1000 0.301 501.20 20.91

0.60
1/100 0.445 547.07 20.93
1/1000 0.420 534.89 20.97

2 points
0.80

1/100 0.315 502.76 20.87
1/1000 0.313 501.56 20.89

0.60
1/100 0.464 503.49 20.88
1/1000 0.376 504.49 20.85

Uniform
0.80

1/100 0.303 501.53 20.80
1/1000 0.295 501.67 20.65

0.60
1/100 0.374 503.18 20.80
1/1000 0.383 504.11 20.86

16

1 point
0.80

1/100 0.499 509.20 21
1/1000 0.499 511.22 21

0.60
1/100 0.606 503.66 21
1/1000 0.676 553.23 21

2 points
0.80

1/100 0.587 552.97 21
1/1000 0.515 512.65 21

0.60
1/100 0.643 508.42 21
1/1000 0.657 512.55 21

Uniform
0.80

1/100 0.471 513.12 21
1/1000 0.469 511.80 21

0.60
1/100 0.610 507.06 21
1/1000 0.617 513.47 21

32

1 point
0.80

1/100 0.951 551.03 21
1/1000 0.854 515.27 21

0.60
1/100 1.128 529.91 21
1/1000 1.264 589.95 21

2 points
0.80

1/100 1.030 509.52 21
1/1000 1.047 507.11 21

0.60
1/100 1.280 523.48 21
1/1000 1.192 512.33 21

Uniform
0.80

1/100 0.997 513.84 21
1/1000 0.880 521.72 21

0.60
1/100 1.226 563.74 21
1/1000 1.139 534.09 21

Author: Delgado, Hugo J. and Cruz, Alfredo

 8

Conclusion

As the number of variables and clauses increases, we may need to increase the initial population to
cover the solution space efficiently. Increasing the population size also increases the runtime. A balance
between these two factors must be achieved in future studies. Some of the results in this investigation may
be CNF-dependent, so further tests are required to test and benchmark this implementation of the Genetic
Algorithm. Regardless, genetic algorithms present a diversified set of tools that can be optimized for finding
solutions and require further study. Genetic Algorithms are an effective stochastic alternative for finding
solutions to difficult problems that can be expressed as SAT equations. Degré et al. (2024) used a man-in-
the-middle attack to improve the SAT modeling of a reduced round Ascon-hash a lightweight cipher
proposed for authenticated encryption and hashing. The algebraic degree of 2 of its substitution boxes
makes the cipher prone to algebraic attacks using SAT solvers and therefore make them a candidate to be
studied with Genetic Algorithms.

The neglectable dependence on the number of solutions detected and the configuration parameters
makes genetic algorithms as SAT solvers a potential alternative. This helps optimize the best choice of
parameters and configuration of the SAT solver to the one with the least time complexity. Time constraints
are a priority when dealing with large CNFs such as those found in cryptanalysis.

Future Work

Several ideas emerged during this work that require validation by isolating each modification of the
genetic algorithm and comparing the speedup obtained to a simple algorithm implementation. Preliminary
results show that a neighborhood search, all solutions with a hamming distance of 1 to the current
individual, may yield a higher number of solutions in a significantly smaller number of generations and run
time. This idea led to the proposition of using a decimal fitness function that averages over the fitness of
each neighbor. Still, the algorithm needs to be refined so that increasing the problem size does not affect
running time. Other features that adapt the search to the genetic algorithm conditions need to be
considered, such as dynamic parameter settings or methods for stagnation detection.

In terms of selection, several other methods need to be compared, such as sigma-scaled selection,
where the fitness is rescaled using the average and the standard deviation, and stochastic selection, where
the individuals are split into segments and chosen at equal intervals but with the first individual selected
randomly using a probability distribution. Future studies must also explore Tabu search and other local
search methods.

Genetic algorithms have shown versatility in their implementation and application. Cryptanalytic
methods require resource-intensive computation where large data sets are analyzed several times to solve
the cryptogram. Heuristic searches, parallelism, and proper representation of the cryptographic structure
may be used in a GA application for cryptanalysis. Expressing the structure of a cryptographic
implementation as a satisfiability problem (SAT) may provide the context for cryptanalysis using Genetic
Algorithms. Algebraic cryptanalysis has proven effective towards lightweight block ciphers such as KeeLoq,
an intelligent car-key encryption protocol. Genetic Algorithms have been used as SAT solvers in several
applications and have shown better performance in some instances than other random search
implementations. Ascon (Dobraunig et al., 2021), the lightweight authenticated encryption and hash
function family, has been cryptanalyzed using SAT solvers (Baek et al., 2024; Degré et al., 2024). An
application of genetic algorithms to the cryptanalysis of Ascon remains to be investigated.

While block ciphers are considered safe from the quantum threat, quantum computers can solve
SAT problems in polynomial time but may require more qubits and gates than are available today.
Nevertheless, genetic algorithms and parallel computation may pose a threat to block ciphers.

Acknowledgment
This work was possible thanks to the PUPR PPOHA Research Assistantship Grant.

Applications of genetic algorithms to cybersecurity.

 9

References

Baek, S., Kim, G., & Kim, J. (2024). Preimage Attacks on Reduced-Round Ascomn-Xof*. Cryptology EPrint
Archive, 298, 1–25. https://eprint.iacr.org/2024/298

Baraklı, A. B., Semiz, F., & Atasoy, E. (2023). The Specialized Threat Evaluation and Weapon Target
Assignment Problem: Genetic Algorithm Optimization and ILP Model Solution. In J. Correia;, S.
Smith, & Raneem Qaddoura (Eds.), Applications of Evolutionary Computation 26th European
Conference, EvoApplications 2023. Brno, Czech Republic, April 12–14, 2023 (pp. 19–34). Springer
International Publishing. https://doi.org/10.1007/978-3-031-30229-9_2

Bard, G. V. (2009). Algebraic Cryptanalysis. Springer US. https://doi.org/10.1007/978-0-387-88757-9
Bauschert, T., D’Andreagiovanni, F., Kassler, A., & Wang, C. (2019). A Matheuristic for Green and Robust

5G Virtual Network Function Placement. In P. Kaufmann; & P. A. Castillo (Eds.), 22nd International
Conference, EvoApplications 2019 Held as Part of EvoStar 2019 Leipzig, Germany, April 24–26,
2019 (pp. 430–438). Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-16692-2_29

Correia, J., Gama, G., Guerrinha, J. T., Cadime, R., Antero Carvalhido, P., Vieira, T., & Lourenço, N. (2023).
Automatic Design of Telecom Networks with Genetic Algorithms. In J. Correia;, S. Smith, & R.
Qaddoura (Eds.), Applications of Evolutionary Computation 26th European Conference,
EvoApplications 2023. Brno, Czech Republic, April 12–14, 2023 (pp. 269–284). Springer Nature
Switzerland. https://doi.org/10.1007/978-3-031-30229-9_18

Courtois, N. T., Bard, G. V., & Wagner, D. (2008). Algebraic and Slide Attacks on KeeLoq. In Fast Software
Encryption: Vol. 5086 LNCS (pp. 97–115). Springer Berlin Heidelberg. https://doi.org/10.1007/978-
3-540-71039-4_6

Degré, M., Derbez, P., Lahaye, L., & Schrottenloher, A. (2024). New Models for the Cryptanalysis of ASCON.
Cryptology EPrint Archive, 298, 1–21.

Deveci, A., Yilmaz, S., & Sen, S. (2023). Evolving Lightweight Intrusion Detection Systems for RPL-Based
Internet of Things. In J. Correia, S. Smith, & R. Qaddoura (Eds.), 26th European Conference,
EvoApplications 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 (pp.
177–193). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-30229-9_12

Dobraunig, C., Eichlseder, M., Mendel, F., & Schläffer, M. (2021). Ascon v1.2: Lightweight Authenticated
Encryption and Hashing. Journal of Cryptology, 34(3), 33. https://doi.org/10.1007/s00145-021-
09398-9

Eiben, A. E., & Smith, J. E. (2015). Introduction to Evolutionary Computing. Springer Berlin Heidelberg.
https://doi.org/10.1007/978-3-662-44874-8

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis With
Applications to Biology, Control, and Artificial Intelligence. (2nd ed.). MIT Press.

Lardeux, F., Saubion, F., & Hao, J.-K. (2006). GASAT: A Genetic Local Search Algorithm for the
Satisfiability Problem. Evolutionary Computation, 14(2), 223–253.
https://doi.org/10.1162/evco.2006.14.2.223

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.). Springer
Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03315-9

Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kauffmann.

Pavlenko, A., Semenov, A., & Ulyantsev, V. (2019). Evolutionary Computation Techniques for Constructing
SAT-Based Attacks in Algebraic Cryptanalysis. In P. Kaufmann, P., Castillo (Ed.), Applications of
Evolutionary Computation. Evo Applications 2019 (Vol. 11454, pp. 237–253). Springer International
Publishing. https://doi.org/10.1007/978-3-030-16692-2_16

Russell, S. J., Norvig, P., Davis, E., Hay, N. J., & Sahami, M. (2010). Artificial Intelligence, A Modern
Approach (3rd Int. V).

Author: Delgado, Hugo J. and Cruz, Alfredo

 10

Saeed, A., Chen, G., Ma, H., & Fu, Q. (2023). A Memetic Genetic Algorithm for Optimal IoT Workflow
Scheduling. In J. Correia, S. Smith, & R. Qaddoura (Eds.), 26th European Conference,
EvoApplications 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 (pp.
556–572). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-30229-9_36

Sipser, M. (2013). Introduction to the Theory of Computation (3rd ed.). Cengage Learning.

Tito-Corrioso, O., Borges-Quintana, M., Borges-Trenard, M. A., Rojas, O., & Sosa-Gómez, G. (2023). On
the Fitness Functions Involved in Genetic Algorithms and the Cryptanalysis of Block Ciphers.
Entropy, 25(2), 1–13. https://doi.org/10.3390/e25020261

Yilmaz, S., & Sen, S. (2019). Early Detection of Botnet Activities Using Grammatical Evolution. In P.
Kaufmann & P. A. Castillo (Eds.), 22nd International Conference, EvoApplications 2019 Held as Part
of EvoStar 2019 Leipzig, Germany, April 24–26, 2019 (pp. 395–404). Springer Nature Switzerland.
https://doi.org/10.1007/978-3-030-16692-2_26

