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Abstract 

Genetic Algorithms offer the benefit of parallelism by comparing populations of solutions 
and mimicking evolution in the survival of the fittest competition. Several applications of 
genetic algorithms in cybersecurity have emerged in recent literature, from cryptanalysis 
to IoT scheduling and network routing. GA has also been used in combinatorial 
optimization and as SAT solvers. Experiments were conducted to compare crossover 
features in a genetic algorithm SAT solver. Several new features were tested, such as age-
based survival, neighborhood-based fitness, and duplicate pruning. These features helped 
maintain diversity while keeping convergence towards maximum fitness. Scaling the 
fitness function values using the mean and standard deviation of the population’s fitness 
improved selection pressure during roulette selection. This implementation is focused on 
producing an efficient genetic algorithm SAT solver, which could be used in the 
cryptanalysis of block ciphers. 

Keywords: Genetic Algorithms; Evolutionary Computation; SAT Solver; Crossover; GASAT. 

Introduction 

Several important problems in cybersecurity require optimization, modeling, and simulation. The 
computer scientist's task is to provide easy algorithms to find solutions in a reasonable amount of time, 
given restricted computing resources. Evolutionary algorithms and genetic computation may be alternative 
search methods for complex problems in computer science. Evolutionary computation stems from the 
search for optimization algorithms inspired by biology, particularly the process of natural evolution (Eiben 
& Smith, 2015, p. 13). Evolutionary and genetic algorithms can be interpreted as stochastic beam search 
techniques, where the algorithm tries to find a solution using an objective function to compare solutions 
(Russell et al., 2010, pp. 110–119) called the fitness function. 

John Holland (1992) initially proposed Genetic Algorithms; in them, the Darwinian idea of survival 
of the fittest inspires the construction of fitness functions to find the optimal solution to a problem. Genetics 
has brought the idea that a phenotype, or visible characteristics of a species, is tied to its genotype, the 
genetic code in DNA. In contrast, Genetic Algorithms represent the genes as bits or segments of code, while 
the phenotype is the characteristics measured by its fitness. Genetic algorithms suit complex systems where 
conflicting or interacting objectives may produce different solutions or outcomes. 

Genetic Algorithms have found applications in “routing, scheduling, adaptive control, game 
playing, cognitive modeling, transportation problems, the traveling salesman problem, optimal control 
problems, database query optimization, etc.” (Michalewicz, 1996, p. 15). Recently, GAs have seen several 
implementations in optimization related to physical security, for example, in Baraklı et al. (2023) genetic 
algorithms were used for threat evaluation in the context of weapon assignment problems. Regarding 
network design, genetic algorithms considered conflicting interests such as user demand, placement, and 
routing of equipment and cables (Correia et al., 2023). Baushchert (2019) proposed using GA to find 
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optimal solutions in constructing a 5G virtual network, which was later improved by an exact solution 
search using mathematical programming. 

Genetic Algorithms and Cybersecurity 

Several recent applications of evolutionary algorithms in cybersecurity can be enumerated. Saeed 
et al. (2023) showed that genetic algorithms improved energy and resource allocation in the problem of 
Internet of Things (IoT) workflow scheduling. Their results outperformed standard algorithms in workflow 
scheduling. Devecci et al. (2023) applied an evolutionary algorithm for intrusion detection in a low-power 
lossy network of IoT devices. Yilmaz and Sen (2019) used grammatical evolution in the early detection of 
botnets, obtaining better results than previous methods. 

Block ciphers are used extensively in lightweight cryptography as authentication protocols. 
Applications of Genetic Algorithms in cryptography could help improve cryptographic primitives and 
protocols through cryptanalysis of block ciphers (Pavlenko et al., 2019; Tito-Corrioso et al., 2023). 
Expressing the structure of the selected cryptographic implementation as a satisfiability problem (SAT) may 
provide the context for evaluating the implementation using Genetic Algorithms. The knowledge about a 
cipher, in combination with techniques such as guess-and-determine, is written into equations representing 
the relation between ciphertext-plaintext pairs. Algebraic cryptanalysis, for example, describes the 
structure and information about a cipher as a set of polynomial equations that can then be solved as a 
satisfiability problem (Bard, 2009; Courtois et al., 2008; Pavlenko et al., 2019). It has proven an effective 
method in the attack of lightweight block ciphers. Since algebraic equations representing a cipher can be 
transformed into a Satisfiability problem, it can be fed to a Genetic Algorithm to find the key or the plaintext. 

 

Figure 1 General flowchart of a Genetic Algorithm 

Figure 1 represents a general overview of the steps in a Genetic Algorithm. Several options exist for 
selection, recombination, mutation, and survival. In satisfiability problems, the individuals are bit strings 
representing the true or false assignment to each variable in the equation. 
Satisfiability and Genetic Algorithms 

The full set of words of fixed size k using the Boolean alphabet is also called the hypercube of 
dimension k. Formally represented as {0,1}! , (𝑘 ≥ 1)	for	𝑘 ∈ 𝑁, each word can also be called a vector of 
length 𝑘 lying in the hypercube. Discrete functions that take such vectors as input are called Boolean 
functions of arity k, where k represents the number of variables in the function. The combination of 
conjunction, disjunction, and negation is a complete set of operators for representing these functions. 
Respectively, these operators are represented by ∧,∨,¬. These symbols represent the logical operators AND, 
OR, and NOT. 

Conjunctive Normal Forms (CNF) are defined as a conjunction of clauses. Clauses are Boolean 
functions consisting of disjunctions of literals without complementary pairs. A complimentary pair consists 
of a variable and its negation. Therefore, a disjunction of a complementary pair is a tautology. Literals is 
another term for the variables in the Boolean formula. A Boolean formula (see Equation 1) with at least one 
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vector that produces a true output is called satisfiable; if no vector returns true, it is called unsatisfiable. 
The problem of determining if a Boolean function has a satisfiable assignment is called the Boolean 
Satisfiability Problem or SAT (Nilsson, 1998, pp. 25-35;217-238). 

The SAT problem is NP-complete, and many computer science problems can be reduced to 
satisfiability problems in polynomial time (Sipser, 2013, p. 304). Research has been conducted using SAT 
solvers and Genetic Algorithms, proving their significance in many computer science and security areas.  

A potential application of genetic algorithms as SAT solvers lies in algebraic cryptanalysis since it 
represents knowledge about a cryptosystem as a set of polynomial equations under the Galois field of 2nd 
order, which can be represented as SAT. Algebraic cryptanalysis has been effective against block ciphers 
such as KeeLoq, an intelligent car key authentication protocol (Bard, 2009). 

Methods 

There is an indefinite number of specifications on applying the general idea behind a Genetic 
Algorithm. First is the encoding mechanism; it establishes how to represent the individuals so the program 
can successfully evolve, mutate, cross genes, and measure their fitness. The mixing number specifies the 
number of parents from a generation to create offspring in the next generation. A selection process defines 
the method of choosing the parents, which can be random or mediated by their fitness. During 
recombination or mating, the genome from one parent is combined with another. The mutation rate 
establishes how often random mutations will happen, which is necessary to prevent fast convergence. 
Elitism is the method used to guarantee an increase in the total fitness of the population. At the same time, 
a minimum threshold can be used to discard low-fitness sections of the population (Russell et al., 2010, p. 
116). 

Data: A set of Conjunctive Normal Form Clauses 𝜙,𝑀𝑎𝑥𝑓𝑙𝑖𝑝,𝑀𝑎𝑥𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 
Result: the best truth assignment to the 3-SAT formula 
Begin 

CreatePopulation(P) 
𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 ← 0 
While no 𝑋	 ∈ 𝑃 satisfies 𝜙 and 𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 < 𝑀𝑎𝑥𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 do  

/* Selection */ 
𝑃" ← 𝑆𝑒𝑙𝑒𝑐𝑡(𝑃,𝑁𝑏𝐼𝑛𝑑) 
Choose 𝑋, 𝑌 ∈ 𝑃" 
/* Crossover */ 
𝑍 ← 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑋, 𝑌) 
/* Insertion condition of the child */ 
𝑃 ← 𝑅𝑒𝑝𝑙𝑎𝑐𝑒(𝑍, 𝑃) 
𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 ← 𝑁𝑏𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟𝑠 + 1 
If there exists 𝑋 ∈ 𝑃 satisfying 𝜙 then 

Return the corresponding assignment. 
Else 

Return the best assignment found. 
 

Algorithm 1 GASAT Algorithm (following Lardeux et al., 2006 without Taboo Search). 

The fitness function is particularly special among the different constituents of a Genetic Algorithm 
since it represents the population's requirements to adapt (Eiben & Smith, 2015, p. 30). The fitness function 
assigns numerical values to the qualities of the individuals in the population such that the individuals can 
be measured objectively. Nilsson (1998, pp. 59–60) describes the fitness function as the mathematical 
landscape where population individuals reproduce. In the topographic analogy, individuals at higher 
elevations have a higher chance of reproduction. Strategies are needed to maintain diversity within the 
population until a satisfying solution is found. The approach proposed in this paper is to develop a genetic 
algorithm for a SAT problem. A sample Genetic Algorithm presented by Lardeux et al (2006) is shown. 
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In Algorithm 1 (see also Figure 1), the population P is created randomly as binary strings. The 
population is tested using the SAT formula in CNF, and the number of true clauses is counted. The 
individual's fitness is established by the number of satisfied clauses (TRUE). A population sample is chosen 
for mating, to produce the offspring. A set of new individuals is produced using the crossover function where 
the genome from both parents is mixed. The new generation is composed of a combination of parents and 
their offspring. The program will continue until the maximum number of generations is reached or if 
stagnation is detected by comparing the change in the average fitness in recent generations to the whole 
evolution. The implementation presented in this paper used binary word representation for the individuals 
with a word length of 10 bits. The CNF used to represent the SAT problem is presented in Equation 1: 

𝐹(𝑋#$#%) = (¬𝑋& ∨ ¬𝑋' ∨ ¬𝑋( ∨ 𝑋) ∨ ¬𝑋* ∨ 𝑋+ ∨ ¬𝑋, ∨ ¬𝑋-) ∧ (𝑋# ∨ 𝑋& ∨ 𝑋( ∨ ¬𝑋) ∨ ¬𝑋* ∨ 𝑋,)
∧ (¬𝑋' ∨ ¬𝑋) ∨ ¬𝑋#%) ∧ (𝑋() ∧ (𝑋# ∨ 𝑋& ∨ ¬𝑋' ∨ 𝑋( ∨ 𝑋* ∨ ¬𝑋+ ∨ ¬𝑋- ∨ 𝑋#%)
∧ (¬𝑋# ∨ ¬𝑋& ∨ ¬𝑋' ∨ ¬𝑋( ∨ 𝑋) ∨ ¬𝑋* ∨ 𝑋+ ∨ ¬𝑋, ∨ ¬𝑋#%) ∧ (¬𝑋& ∨ ¬𝑋#%)
∧ (¬𝑋# ∨ 𝑋& ∨ ¬𝑋' ∨ 𝑋) ∨ 𝑋* ∨ 𝑋+ ∨ ¬𝑋, ∨ ¬𝑋- ∨ ¬𝑋#%) ∧ (𝑋& ∨ 𝑋#%)
∧ (𝑋# ∨ 𝑋' ∨ ¬𝑋) ∨ 𝑋* ∨ 𝑋+ ∨ ¬𝑋, ∨ 𝑋- ∨ 𝑋#%)
∧ (𝑋& ∨ ¬𝑋' ∨ ¬𝑋( ∨ ¬𝑋) ∨ 𝑋* ∨ ¬𝑋+ ∨ ¬𝑋, ∨ 𝑋- ∨ 𝑋#%) ∧ (¬𝑋# ∨ ¬𝑋) ∨ ¬𝑋* ∨ 𝑋, ∨ 𝑋-)
∧ (𝑋#) ∧ (¬𝑋( ∨ 𝑋- ∨ ¬𝑋#%) ∧ (¬𝑋# ∨ 𝑋' ∨ ¬𝑋( ∨ ¬𝑋) ∨ ¬𝑋* ∨ 𝑋, ∨ ¬𝑋- ∨ ¬𝑋#%)
∧ (𝑋' ∨ 𝑋( ∨ ¬𝑋- ∨ 𝑋#%) ∧ (¬𝑋# ∨ ¬𝑋& ∨ ¬𝑋' ∨ 𝑋) ∨ 𝑋+ ∨ 𝑋, ∨ 𝑋- ∨ ¬𝑋#%) ∧ (¬𝑋-)
∧ (¬𝑋& ∨ ¬𝑋) ∨ ¬𝑋* ∨ ¬𝑋- ∨ ¬𝑋#%) ∧ (¬𝑋# ∨ ¬𝑋' ∨ ¬𝑋+ ∨ 𝑋#%)	

Equation 1 

This formula contains a total of 10 variables and 20 clauses. The function is satisfied if a given 
variable assignment returns true on all 20 clauses. Each clause has between 1 to 9 variables present. No 
variable is present more than once in each clause. The function has 1024 respective variable assignments, 
and the genetic algorithm's task is to find satisfying solutions. 

Roulette wheel selection (see Figure 2 and Algorithm 2) was chosen as the selection method for this 
investigation. During roulette wheel selection, individuals are ranked by fitness, and a cumulative 
probability distribution is calculated. First, the total sum of the fitness of the population is calculated. Then, 
to calculate the cumulative fitness for each member of the population, their fitness is divided by the total 
fitness and then added to the previous member's cumulative fitness. This method returns a cumulative 
probability, ranging from 0 to 1 so that all members have a probability of being chosen. Each member will 
then be assigned a probability range whose maximum is its cumulative probability and the minimum is the 
previous member's cumulative fitness. Members with higher fitness have a broader range because their 
fractional weight is larger; therefore, they have higher probabilities. 

 
Figure 2 Random methods used during selection. 
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In Figure 2 a random number between 0 and 1 is chosen and the genome with the cumulative value greater 
than the random number is the selected individual for reproduction. In Algorithm 2 the selection method 
is presented once the cumulative distribution has been calculated for all individuals. The roulette wheel 
chooses individuals until the desired sample size is achieved using the crossover rate and the population 
size. 

Data: A population, 𝑃, a cumulative distribution, 𝐷, and a sample size 𝑆. 
Result: A random sample, 𝑃" 
Begin: 

While 𝑃./01" < 𝑆 do: 
Choose a random number, 𝑅  

0 ≤ 𝑅 ≤ 𝑃./01 
While 𝑅 < 𝐷[𝑖] do:	

𝑖 ← 𝑖 + 1 
Add the element to the sample: 

𝑃" ← 𝑃[𝑖] 
 
Return: 𝑃" 

Algorithm 2 Roulette Selection 

Populations of 8, 16, and 32 random genomes were created before running the algorithm. For each 
population size, the crossover rate was set to 80% or 100%, and mutation rates of 1/100 or 1/1000 were 
tested. Several additional features were attempted as part of the experiments. The oldest individual from 
each generation is removed after 10 consecutive iterations. This feature helps maintain diversity in the 
population, although part of its genome may remain distributed among other individuals. Three crossover, 
one-point, two-point, and uniform methods were compared (see Figure 3). In a one-point crossover, a single 
reference point cuts each parent's genome to produce two offspring. In the two-point crossover, three 
genome segments are shared between the two offspring, each having the beginning and end of one parent 
and the middle genetic material of the other parent. In uniform crossover, a random template is chosen to 
share genes from both parents. Each method produces two offspring from two parents. The experiments 
were carried over 100 times and their averaged results are presented in Table 1.  

Several experiments found that the diversity may stagnate after a few generations when the 
algorithm falls into local maxima. To avoid premature convergence, duplicate offspring were pruned before 
adding to the population during the survival phase. If the resulting population was greater than the desired 
population size, smaller fitness individuals were removed; on the other hand, new random individuals were 
added if the resulting population was smaller than the population size.  

This implementation was programmed in Python version 3.11.7 and run in a Jupyter Notebook 
running on MacOS Sonoma version 14.2.1. The system is a MacBook Pro 2 GHz Quad-Core Intel Core i5 
with 16 GB 3733 MHz RAM. 

 

Figure 3 The effect of one-point, two-point, and uniform crossovers on the parent-
offspring genomes. 
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Results 

Table 1 presents the results of the experiments. In the first column, the population number is 
presented. This number represents the number of random members chosen at the beginning of the 
algorithm. CX type refers to the type of crossover, either one-point, two-point, or uniform crossover, as 
described in the previous section. The mutation rate indicates the probability that a given offspring will 
mutate its genome before the next generation is chosen. CPU time is the number of seconds the algorithm 
takes before stopping, either because the maximum number of generations is achieved or because the 
moving average fitness is not changing significantly. The column marked generations indicates the average 
generation during which the algorithm stopped. Notice that stagnation detection starts at the 500th 
generation. The last column, Solutions, represents the average number of solutions with the given features 
and parameters. 

The results presented in Table 1 show that larger populations produce more results regardless of 
other features but require longer running times. Using a population of 16 or 32 individuals, the 21 satisfying 
solutions of the CNF were found soon after the 500th generation when the stagnation detection feature 
began. A method must be devised to stop the algorithm in a real-case scenario where the number of 
solutions is unknown. In a cryptanalytic scenario, finding at least one solution might be enough, so the 
opposite case should also be asked: when should the algorithm stop if no solution is found? 

The type of crossover seems to have little effect on the number of results or the CPU times. Since 
crossover mixes the parents' genetic information, any reasonable combination of genes will produce a 
reasonable combination for the offspring after crossover. This might not be the case in all CNFs because the 
solution structure may require combinations that can be achieved with a particular crossover method. For 
example, a two-point crossover may cut a specific section in the middle of a genome that improves a 
solution, whereas a uniform or one-point crossover may not. 

The crossover rate seems to be the dominant feature in these experiments; a higher crossover rate, 
such as 80%, yields similar results in terms of solutions than a 60% rate but in a smaller CPU time. The 
crossover rate, therefore, seems to be the dominant feature when the initial population is small (8) but has 
less significance when the population is large (16, 32). The best result overall had 8 items in the initial 
population, 1/100 mutation, and an 80% crossover rate. 

  
(a) (b) 

Figure 4 Sample progress curves. 

In Figure 4, two sample progress curves show the average fitness per generation for a trial with an 
initial population of 32 individuals, a crossover rate of 80%, and a one-point crossover. In (a), the mutation 
rate was set to 0.01, while in (b), the mutation rate was kept at 0.001. The average fitness shows variability 
because it combines the fitness of the best and worst members of the population in each generation. Due to 
the random nature of the crossover points, the average may not always improve. 
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Table 1 Comparison of results for different initial populations, crossover, and mutation 

 
Initial 

Population CX Type CX rate Mutation Rate CPU Time (s) Generations Solutions 

8 

1 point 
0.80 

1/100 0.295 501.15 20.89 
1/1000 0.301 501.20 20.91 

0.60 
1/100 0.445 547.07 20.93 
1/1000 0.420 534.89 20.97 

2 points 
0.80 

1/100 0.315 502.76 20.87 
1/1000 0.313 501.56 20.89 

0.60 
1/100 0.464 503.49 20.88 
1/1000 0.376 504.49 20.85 

Uniform 
0.80 

1/100 0.303 501.53 20.80 
1/1000 0.295 501.67 20.65 

0.60 
1/100 0.374 503.18 20.80 
1/1000 0.383 504.11 20.86 

16 

1 point 
0.80 

1/100 0.499 509.20 21 
1/1000 0.499 511.22 21 

0.60 
1/100 0.606 503.66 21 
1/1000 0.676 553.23 21 

2 points 
0.80 

1/100 0.587 552.97 21 
1/1000 0.515 512.65 21 

0.60 
1/100 0.643 508.42 21 
1/1000 0.657 512.55 21 

Uniform 
0.80 

1/100 0.471 513.12 21 
1/1000 0.469 511.80 21 

0.60 
1/100 0.610 507.06 21 
1/1000 0.617 513.47 21 

32 

1 point 
0.80 

1/100 0.951 551.03 21 
1/1000 0.854 515.27 21 

0.60 
1/100 1.128 529.91 21 
1/1000 1.264 589.95 21 

2 points 
0.80 

1/100 1.030 509.52 21 
1/1000 1.047 507.11 21 

0.60 
1/100 1.280 523.48 21 
1/1000 1.192 512.33 21 

Uniform 
0.80 

1/100 0.997 513.84 21 
1/1000 0.880 521.72 21 

0.60 
1/100 1.226 563.74 21 
1/1000 1.139 534.09 21 
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Conclusion 

As the number of variables and clauses increases, we may need to increase the initial population to 
cover the solution space efficiently. Increasing the population size also increases the runtime. A balance 
between these two factors must be achieved in future studies. Some of the results in this investigation may 
be CNF-dependent, so further tests are required to test and benchmark this implementation of the Genetic 
Algorithm. Regardless, genetic algorithms present a diversified set of tools that can be optimized for finding 
solutions and require further study. Genetic Algorithms are an effective stochastic alternative for finding 
solutions to difficult problems that can be expressed as SAT equations. Degré et al. (2024) used a man-in-
the-middle attack to improve the SAT modeling of a reduced round Ascon-hash a lightweight cipher 
proposed for authenticated encryption and hashing. The algebraic degree of 2 of its substitution boxes 
makes the cipher prone to algebraic attacks using SAT solvers and therefore make them a candidate to be 
studied with Genetic Algorithms. 

The neglectable dependence on the number of solutions detected and the configuration parameters 
makes genetic algorithms as SAT solvers a potential alternative. This helps optimize the best choice of 
parameters and configuration of the SAT solver to the one with the least time complexity. Time constraints 
are a priority when dealing with large CNFs such as those found in cryptanalysis. 

Future Work 

Several ideas emerged during this work that require validation by isolating each modification of the 
genetic algorithm and comparing the speedup obtained to a simple algorithm implementation. Preliminary 
results show that a neighborhood search, all solutions with a hamming distance of 1 to the current 
individual, may yield a higher number of solutions in a significantly smaller number of generations and run 
time. This idea led to the proposition of using a decimal fitness function that averages over the fitness of 
each neighbor. Still, the algorithm needs to be refined so that increasing the problem size does not affect 
running time. Other features that adapt the search to the genetic algorithm conditions need to be 
considered, such as dynamic parameter settings or methods for stagnation detection. 

In terms of selection, several other methods need to be compared, such as sigma-scaled selection, 
where the fitness is rescaled using the average and the standard deviation, and stochastic selection, where 
the individuals are split into segments and chosen at equal intervals but with the first individual selected 
randomly using a probability distribution. Future studies must also explore Tabu search and other local 
search methods. 

Genetic algorithms have shown versatility in their implementation and application. Cryptanalytic 
methods require resource-intensive computation where large data sets are analyzed several times to solve 
the cryptogram. Heuristic searches, parallelism, and proper representation of the cryptographic structure 
may be used in a GA application for cryptanalysis. Expressing the structure of a cryptographic 
implementation as a satisfiability problem (SAT) may provide the context for cryptanalysis using Genetic 
Algorithms. Algebraic cryptanalysis has proven effective towards lightweight block ciphers such as KeeLoq, 
an intelligent car-key encryption protocol. Genetic Algorithms have been used as SAT solvers in several 
applications and have shown better performance in some instances than other random search 
implementations. Ascon (Dobraunig et al., 2021), the lightweight authenticated encryption and hash 
function family, has been cryptanalyzed using SAT solvers (Baek et al., 2024; Degré et al., 2024). An 
application of genetic algorithms to the cryptanalysis of Ascon remains to be investigated. 

While block ciphers are considered safe from the quantum threat, quantum computers can solve 
SAT problems in polynomial time but may require more qubits and gates than are available today. 
Nevertheless, genetic algorithms and parallel computation may pose a threat to block ciphers. 

Acknowledgment 
This work was possible thanks to the PUPR PPOHA Research Assistantship Grant. 



Applications of genetic algorithms to cybersecurity. 

 9 

References 

Baek, S., Kim, G., & Kim, J. (2024). Preimage Attacks on Reduced-Round Ascomn-Xof*. Cryptology EPrint 
Archive, 298, 1–25. https://eprint.iacr.org/2024/298 

Baraklı, A. B., Semiz, F., & Atasoy, E. (2023). The Specialized Threat Evaluation and Weapon Target 
Assignment Problem: Genetic Algorithm Optimization and ILP Model Solution. In J. Correia;, S. 
Smith, & Raneem Qaddoura (Eds.), Applications of Evolutionary Computation 26th European 
Conference, EvoApplications 2023. Brno, Czech Republic, April 12–14, 2023 (pp. 19–34). Springer 
International Publishing. https://doi.org/10.1007/978-3-031-30229-9_2 

Bard, G. V. (2009). Algebraic Cryptanalysis. Springer US. https://doi.org/10.1007/978-0-387-88757-9 
Bauschert, T., D’Andreagiovanni, F., Kassler, A., & Wang, C. (2019). A Matheuristic for Green and Robust 

5G Virtual Network Function Placement. In P. Kaufmann; & P. A. Castillo (Eds.), 22nd International 
Conference, EvoApplications 2019 Held as Part of EvoStar 2019 Leipzig, Germany, April 24–26, 
2019 (pp. 430–438). Springer Nature Switzerland. https://doi.org/10.1007/978-3-030-16692-2_29 

Correia, J., Gama, G., Guerrinha, J. T., Cadime, R., Antero Carvalhido, P., Vieira, T., & Lourenço, N. (2023). 
Automatic Design of Telecom Networks with Genetic Algorithms. In J. Correia;, S. Smith, & R. 
Qaddoura (Eds.), Applications of Evolutionary Computation 26th European Conference, 
EvoApplications 2023. Brno, Czech Republic, April 12–14, 2023 (pp. 269–284). Springer Nature 
Switzerland. https://doi.org/10.1007/978-3-031-30229-9_18 

Courtois, N. T., Bard, G. V., & Wagner, D. (2008). Algebraic and Slide Attacks on KeeLoq. In Fast Software 
Encryption: Vol. 5086 LNCS (pp. 97–115). Springer Berlin Heidelberg. https://doi.org/10.1007/978-
3-540-71039-4_6 

Degré, M., Derbez, P., Lahaye, L., & Schrottenloher, A. (2024). New Models for the Cryptanalysis of ASCON. 
Cryptology EPrint Archive, 298, 1–21. 

Deveci, A., Yilmaz, S., & Sen, S. (2023). Evolving Lightweight Intrusion Detection Systems for RPL-Based 
Internet of Things. In J. Correia, S. Smith, & R. Qaddoura (Eds.), 26th European Conference, 
EvoApplications 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 (pp. 
177–193). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-30229-9_12 

Dobraunig, C., Eichlseder, M., Mendel, F., & Schläffer, M. (2021). Ascon v1.2: Lightweight Authenticated 
Encryption and Hashing. Journal of Cryptology, 34(3), 33. https://doi.org/10.1007/s00145-021-
09398-9 

Eiben, A. E., & Smith, J. E. (2015). Introduction to Evolutionary Computing. Springer Berlin Heidelberg. 
https://doi.org/10.1007/978-3-662-44874-8 

Holland, J. H. (1992). Adaptation in Natural and Artificial Systems: An Introductory Analysis With 
Applications to Biology, Control, and Artificial Intelligence. (2nd ed.). MIT Press. 

Lardeux, F., Saubion, F., & Hao, J.-K. (2006). GASAT: A Genetic Local Search Algorithm for the 
Satisfiability Problem. Evolutionary Computation, 14(2), 223–253. 
https://doi.org/10.1162/evco.2006.14.2.223 

Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs (3rd ed.). Springer 
Berlin Heidelberg. https://doi.org/10.1007/978-3-662-03315-9 

Nilsson, N. J. (1998). Artificial Intelligence: A New Synthesis. Morgan Kauffmann. 

Pavlenko, A., Semenov, A., & Ulyantsev, V. (2019). Evolutionary Computation Techniques for Constructing 
SAT-Based Attacks in Algebraic Cryptanalysis. In P. Kaufmann, P., Castillo (Ed.), Applications of 
Evolutionary Computation. Evo Applications 2019 (Vol. 11454, pp. 237–253). Springer International 
Publishing. https://doi.org/10.1007/978-3-030-16692-2_16 

Russell, S. J., Norvig, P., Davis, E., Hay, N. J., & Sahami, M. (2010). Artificial Intelligence, A Modern 
Approach (3rd Int. V). 



Author: Delgado, Hugo J. and Cruz, Alfredo 

 10 

Saeed, A., Chen, G., Ma, H., & Fu, Q. (2023). A Memetic Genetic Algorithm for Optimal IoT Workflow 
Scheduling. In J. Correia, S. Smith, & R. Qaddoura (Eds.), 26th European Conference, 
EvoApplications 2023 Held as Part of EvoStar 2023 Brno, Czech Republic, April 12–14, 2023 (pp. 
556–572). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-30229-9_36 

Sipser, M. (2013). Introduction to the Theory of Computation (3rd ed.). Cengage Learning. 

Tito-Corrioso, O., Borges-Quintana, M., Borges-Trenard, M. A., Rojas, O., & Sosa-Gómez, G. (2023). On 
the Fitness Functions Involved in Genetic Algorithms and the Cryptanalysis of Block Ciphers. 
Entropy, 25(2), 1–13. https://doi.org/10.3390/e25020261 

Yilmaz, S., & Sen, S. (2019). Early Detection of Botnet Activities Using Grammatical Evolution. In P. 
Kaufmann & P. A. Castillo (Eds.), 22nd International Conference, EvoApplications 2019 Held as Part 
of EvoStar 2019 Leipzig, Germany, April 24–26, 2019 (pp. 395–404). Springer Nature Switzerland. 
https://doi.org/10.1007/978-3-030-16692-2_26 

  


