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Abstract – This project explored the use of Distributed Machine Learning (DML) as a 
potential tool in training times of Machine Learning (ML) models in lower-end computer 
clusters. To provide alternatives for students and scientists when implementing their ML 
environment without expensive/performant hardware. As part of this, an ML training 
environment was developed and deployed using container technology on a 4-node 
raspberry pi (RPI) computer cluster. This cluster was used to train ML classifier models 
over the popular CIFAR10 dataset. Several test cases were set up to analyze how the 
training times for models were affected when adding and removing nodes from the system 
and varying the processing power, i.e., the number of processor cores allotted to the 
system. Data was recorded for each test, such as the test’s execution time, average CPU 
time spent when building the model, overhead, and model accuracy, among others. When 
analyzing this data, it was found that they were practical limits to the speedup on training 
times achievable when using DML for the cluster, with diminishing returns on speedup 
values when adding additional nodes. Meanwhile, the speedup observed when increasing 
processing power for the cluster displayed no such limitations. This showed that although 
DML can be used to lower training times. This showed that DML can be used to improve 
training times for lower-end devices but in a limited capacity.  
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Introduction 

Machine Learning (ML) is a section of computer science that involves applying a set of 
statistics over a group of data to generate a helpful process or algorithm to achieve some goal(s). 
Some examples of ML applications include controlling self-driving cars (Bojarski, M. et al. 2016), 
recognizing speech (Amodei, D. et al. 2016), predicting market trends (Khandani, A., Kim, A. & 
Lo, A. 2010), among others. Usually, when working with any non-trivial machine learning 
application, a significant amount of data is required. Machine learning models are valued 
depending on how accurately they can complete the task, and it is generally the case that models 
trained with higher amounts of data tend to be more accurate. Although many factors are also 
involved in this, a significant amount of data is needed to be processed to pursue better and more 
accurate models. This results in a rise of the necessary processing power required to train models 
in a reasonable amount of time. There are two possible ways to approach this scaling problem. The 
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first is to perform vertical scaling. The classic example of this is adding programmable GPUs to a 
host system. These GPUs feature a high number of hardware threads which improve performance; 
this has been a proven and tested method (Kargupta, H. et al. 2002, Kargupta, H. et al. 2004). 
Similar methods mostly revolve around a similar concept of adding additional specialized 
hardware to a single host system. The second way this can be approached is by scaling horizontally. 
This is where distributed machine learning systems come in; these are systems and algorithms 
designed to take advantage of multiple computer nodes to process workloads faster than traditional 
machine learning strategies. The benefits of such a strategy have been observed and replicated by 
research such as “A holistic approach for resource-aware adaptive data stream mining” (Philip, 
S.Y. 2006).  

This project had the purpose of viewing how distributed machine learning can be leveraged 
to allow lower-end devices to be used to complete nontrivial machine learning tasks. This was 
explored by developing a training environment/system to be used for training machine learning 
models. This system was used to perform various tests on a microcomputer cluster consisting of 4 
Raspberry Pi (RPI) computer nodes. These tests consisted of training machine learning models as 
classifiers on the CIFAR10 dataset. This dataset consists of 60000 32x32 color images of one of 
ten possible classes. The main quantifiable properties of the models which were focused on were 
training times and accuracy. The system allowed different configurations to train models on the 
CIFAR10 test data with a varying number of nodes in the cluster and the number of processor 
cores used on each host processor. These values were varied to view the impact on performance. 
The unique combination of these served as the different tests conducted in the project. 

Methodology 

For this project, a system or environment was required which would allow for quickly 
training and testing ML models not only in a single host machine but to also be distributed through 
multiple hosts specifically in a computer cluster consisting of 4 raspberry pi computers. The 
developed environment consists of a combination of tools and code. The system built for this 
project emphasized the following qualities: simple to install, operate, and horizontally scalable. 
The system was intended to have “Plug and Play” functionality and be able to be run by users as 
soon as installed. By horizontally scalable it is referred to how the computational capacity of the 
environment or system can be increased or decreased with relative ease by adding or removing 
nodes.  

As part of the development of this system the following steps were required: 

1. Cluster Set up – This is the physical setup of a Raspberry Pi computer cluster and all the
necessary configurations needed to prepare nodes in the cluster.

2. Code Implementation – This encompasses the de-implementation of a machine learning
algorithm(s) capable to be used in a distributed and undistributed environment and the
configuration of used tools.

3. Test Case Development & Execution– This step involved establishing a set of different
tests to be conducted to compare the distributed and undistributed implementations and
viewing and recording observed results.
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4. Analysis of Results – The final from involved analyzing the gathered data from the
previous step to draw conclusions and comparisons.

The main code for this project consisted of three main scripts or programs (using the python 
programming language) these were: 

1. Standalone Client – This program was responsible for running the machine learning
implementation designed to run on a single host.

2. Server Client – This program was part of the distributed machine learning program used which
works in conjunction with the worker-client program or programs to train a model.

3. Worker Client – Second half of distributed machine learning implementation.

The standalone client consisted of a simple machine learning example that would execute 
various tasks such as first loading the CIFAR10 dataset into the file system and then dividing the 
dataset into a testing and training dataset. Then the program would train an ML model over the 
train set. An additional script was used for testing the resulting model over the test dataset and 
outputting the accuracy of the model. This program was designed to be run on a single host in 
traditional ML fashion. When referring to this program further on it will be either as the standalone 
implementation or the undistributed implementation of the classifier algorithm. The second and 
third programs were designed to be executed together in a multi-host environment i.e., the RPI 
computer cluster. The second was a program that acted as server-client which was designed to run 
on a master node in the cluster, this program was responsible for assigning work to worker 
nodes/clients as well as grouping results of work from the worker clients once received and finally 
creating a single ML model as an output. Worker nodes were nodes running the final program that 
would be run in any node of the cluster other than the master node. This was reserved always just 
for the server-client program.  

Figure 1 shows a representation of how both the distributed and undistributed algorithms were 
designed to run on the RPI Cluster:  

Figure 1: Visualization of main programs used in the project. 
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Overall, there was always at least one instance of the server-client running on in the master 
node and one to three server clients running on each worker node in the cluster which consisted of 
4 RPI model 4 B computers. The server and worker clients were designed to communicate and 
operate between themselves using the flower framework a python library which facilitates 
implementing distributed machine learning tasks. This library would handle the creation of the 
output model by aggregating the weights of the different parameters produced from each worker 
and taking the average between them.  Internally the flower framework uses RPC channels to 
increase the speed of communication between the master and clients’ nodes. 

The Processing of running a test on the system was simplified thanks to the selection of 
tools used. First, test cases were defined using docker-compose files. These files defined the 
appropriate images (bundles of code and dependencies) to be used in the test, where containers 
(instance of the code in image) would be deployed to the cluster. The number of nodes and the 
number of CPU cores used. When running the test on a single host, a single container was 
sufficient, but for our distributed test using the RPI cluster, multiple containers were necessary 
which had to run in different nodes in the cluster. Normally, these would have to be started 
individually, in this area docker-compose files also helped as they replaced having to rely on the 
Docker CLI for the deployment of our containers since it is possible to manage multiple containers 
through a single compose file.  

The following code sample shows an example of a docker-compose file for deploying an instance 
of the server-client to the master node of the cluster: 

master: 
 image: ${TARGET}-master-node 
 container_name: ${TARGET}-master 
 build: 

 context: "../" 
 dockerfile: "server.${TARGET}" 

 deploy: 
 mode: global 
 constraint: 
node.label==RPI-M 

networks: 
 cluster_network 

The files could be executed in a group of host computers through a docker swarm which 
in short is a group of computers logically through their docker daemons (running docker process). 
Each worker node in the cluster needed to be registered to the master node via the docker CLI to 
achieve this. When running a compose file on the main node of a docker swarm, the docker daemon 
handles, reads the compose files, and starts managing distribution and execution of containers on 
each swarm node as specified in the compose file used.  

As mentioned before, these compose files were used to define and execute the different test 
cases in the project. When a test case was to be executed its corresponding compose; the file was 
fed to the docker client on the master node of the RPI cluster, also known as the manager for the 
docker swarm. After which docker would take care of deploying containers matching the 
specification given in the compose file. This included specifying the number of nodes and 
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processor cores allotted for use in the test. Figure 2 shows a visual representation of the process of 
building and uploading the final images containing all the necessary source code to execute each 
test case and how these images were used by each node. For caching purposes, these images were 
accessed through a remote registry where the images were stored. The benefit of using a registry 
to distribute images is that the images do not have to be updated locally on each node of the cluster 
before use.   

Figure 2: Visualization of Running Test Cases. 

Next the machine learning algorithm used, and its properties are reviewed.  Below is a code 
snippet with the declaration of the convolution neural network used for training. 

# Class used to define Neural network 
class NueralNetwork(nn.Module): 

 def __init__(self): 
 # Constructor 

 super().__init__() 
 self.conv1 = nn.Conv2d(3, 6, 5) 

 # Adding 2d Convolution Layer 
 self.pool = nn.MaxPool2d(2, 2) 

 # A Pooling Layer reduces the variance 
 self.conv2 = nn.Conv2d(6, 16, 5) 

 # Additional 2d Convolution Layer after pooling 
 self.fc1 = nn.Linear(16 * 5 * 5, 120) 

 # Linear tranformation 
 self.fc2 = nn.Linear(120, 84) 

 # Linear tranformation 
   self.fc3 = nn.Linear(84, 10) 

# Linear trnsformation 

The CNN used consists of 2 convolution layers and 3 Linear transforms. The first layer 
applies a filter to extract features from the image. These would detect basic lines, curves, and basic 
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outlines that are detected on the image. The second layer is a pooling layer which is used to take 
the average of a region when a filter is passed through producing a layer with reduced dimensions. 
This output is passed through an additional convolution layer to extract additional more complex 
features from the averaged previous layer. Finally, three successive linear transforms are applied 
to the resulting layer. These final transforms reduce the output of the convolution layer to 10 
possible outcomes corresponding to the 10 classes of which the images of the CIFAR10 dataset 
could be.  When running an input through the model the output with a higher weight would be 
chosen as the model’s guess.  

As discussed previously the testing process was done using composed files each compose file 
corresponded through a different test case which is run through the system. The different test cases 
consisted of running the same machine learning task. In this case, training a classifier on the 
CIFAR10 data with varying amounts of worker nodes and varying amounts of processor cores. 
Each possible configuration of nodes and cores had its own unique compose file. For these test 
cases, various values were recorded and calculated based on the recorded data. To reduce the 
variance of these values each test case was run three times to produce an aggregate of values across 
three runs. For each test case the following values were recorded and/or calculated:  

 Total Training time (Ttime) – This is the time required for training a model using the parameters
established in the test case. This value was averaged over three runs of the same test case.

 Total Work Time (Wtime) – This approximates the time taken to complete all training
operations for the test case. This is calculated as the average work time between all the nodes
used in the test case.

 Total overhead Time (Otime) – This is the amount of time spent by the system on
communication between nodes. This was calculated by subtracting the total work time from
the total training time.

 Work Percentage (W%) – This value represents the percentage of time the system spent
performing actual work training the model.

 Overhead Percentage (O%) – This value represents the percentage of time the system spent
communicating between nodes.

 Speedup - To check how each test case compares to the following case the speedup was
calculated through a simple division of training times.

Results 

In this section the results of all test cases are compiled as well as various data visualizations 
based on the recovered data, as well the results of any additional calculations performed. The 
abbreviations used for variables in the previous section are used reused in this section. The addition 
of “N” and “C” are short for “node count” and “core count” and represent the number of nodes 
and processor cores allotted for use when running the test case. Next, Table 1 presents the result 
of training a model by first varying the number of worker nodes in the system. 
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Table 1: Results for increasing node counts. 

N : C ∆𝑇௧  ∆𝑊௧ 𝑊% 𝑂% 𝑺 ∆𝐴𝑐𝑐 

1:2 936.3 936.3 1.00 0.00 0.00 0.56 

2:4 478.8 437.6 0.91 0.09 1.96 0.55 

3:6 387.0 327.0 0.84 0.18 2.42 0.56 

From this table, it can be seen that training times were reduced by adding additional worker 
nodes. Though, some additional time was lost due to overhead in the system. This however still 
resulted in positive speed up values after adding additional nodes. Additional nodes could be 
physically added to determine an inflection point where the overhead involved with 
communication starts to be greater than the actual CPU time. Due to lack of materials, an inflection 
point was determined through extrapolating from gathered data this is shown further in figure 4. 
Next Figure 3 shows a visualization of the overall training time and the actual CPU time spent by 
the cluster on average to train models with varying amounts of nodes.  

Figure 3: Training times for test cases varying node count. 

Next, figure 4 presents a visualization of CPU training times vs communication time 
when increasing node count in the cluster. 
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Figure 4: CPU time vs Communication time extrapolated. 

The amount of processing power used in each node configuration was also varied to 
measure the impact additional computational power would have on each node configuration. The 
next following tables present test cases which involved a fixed node count but varying the number 
of processors available to use during training. Next, table 2 shows the results for varying the 
number of cores used when running the cluster in a 3-node configuration. 

Table 2: Results for varying Core count in 3-Node Configuration. 

N:C ∆𝑇௧  ∆𝑊௧ 𝑊%  𝑂% 𝑺 ∆𝐴𝑐𝑐 

3:1 2205.5 1856.9 0.84 0.16 1.00 0.57 

3:2 1247.9 1086.4 0.87 0.13 1.77 0.56 

3:3 815.0 726.8 0.89 0.11 2.71 0.59 

3:4 628.8 561.8 0.89 0.11 3.51 0.58 

3:5 503.2 453.0 0.90 0.10 4.38 0.6 

3:6 387.0 327.0 0.84 0.18 5.70 0.61 

From this table, it can be seen that as more cores were allotted for the cluster to use, training 
times for models decreased.  Next, figure 5 shows a visualization of training times for test results 
using a 3-node configuration. Since this configuration contained the most data points linear and 
exponential regression was used to approximate the behavior of the cluster.  

Figure 5: Results for varying Core count in 3-Node Configuration. 

Figure 6 presents a comparison between the trends for speedup values obtained from 
increasing CPU count and increasing node count. For this figure speedup, the data from tables 1 
and 2 were used to present the behavior of the system when adding computational power to the 
system without adding more nodes. It is important to note that adding a node is equivalent to 
adding two cores to the cluster as each RPI has two cores. This figure was created to view if 
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modifying the existing hardware would produce better results than adding additional nodes to the 
cluster. 

Figure 6: Speedup comparison for varying nodes and cores. 

Discussion 

Training times for models when adding additional nodes outpaced training times for 
models trained by adding additional cores. At least meanwhile, the number of cores remained low. 
Also, from observing the behavior of speed up values it was found that adding additional nodes 
has diminishing returns when compared to simply adding more processing power to the system. 
This is a strong indication that there is a hard limit to the potential reduction of training times that 
can be achieved using this implementation of an RPI cluster simply by adding additional nodes. 
From figure 5 it can be inferred that this limit lies around 4 to 5 nodes when the overhead time 
starts to become greater than the actual time spent performing work. This is consistent with current 
literature regarding how coordination and communication time between nodes is one of the more 
significant bottlenecks in distributed environments, although due to the low number of nodes used 
this did not reduce training times significantly.  

Conclusion 

For this project, an environment for training machine learning models with the 
functionality to scale up or down with relative ease was successfully created. This system was used 
to examine the performance of an RPI cluster in training machine learning models over the 
CIFAR10 dataset.  By observing training times produced by running the test cases on the RPI 
cluster, it was found that in general, models that were produced using a distributed approach were 
trained in less time than models trained with an undistributed approach, at least for initial test 
cases, which involved lower amounts of cores meanwhile when examining the effect of adding 
additional cores to the system without the added complexity of adding additional nodes it was 
found that this could result in greater speedup values when adding the equivalent processing power 
of an additional node to an undistributed system. It is apparent that training machine learning 
models were feasible in an RPI cluster but there were some limitations. For example, examining 
recovered data, it was found that training time could not be reduced indefinitely by adding 
additional nodes to the cluster due to diminishing returns. For this particular implementation, the 
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max practical number of RPI that could be used in the cluster was found to be from 4 to 5. Since 
RPI are not traditionally designed to have their hardware be upgraded, this creates a hard limit for 
workloads able to be run on RPI clusters.  
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