
Exploring Distributed Machine Learning System on Raspberry Pi
Computer Cluster

Isaac L. Torres Torres, Masters Student
Polytechnic University of Puerto Rico

isaacllive@gmail.com

Alfredo Cruz. PhD
Polytechnic University of Puerto Rico

alcruz@pupr.edu

Abstract – This project explored the use of Distributed Machine Learning (DML) as a
potential tool in training times of Machine Learning (ML) models in lower-end computer
clusters. To provide alternatives for students and scientists when implementing their ML
environment without expensive/performant hardware. As part of this, an ML training
environment was developed and deployed using container technology on a 4-node
raspberry pi (RPI) computer cluster. This cluster was used to train ML classifier models
over the popular CIFAR10 dataset. Several test cases were set up to analyze how the
training times for models were affected when adding and removing nodes from the system
and varying the processing power, i.e., the number of processor cores allotted to the
system. Data was recorded for each test, such as the test’s execution time, average CPU
time spent when building the model, overhead, and model accuracy, among others. When
analyzing this data, it was found that they were practical limits to the speedup on training
times achievable when using DML for the cluster, with diminishing returns on speedup
values when adding additional nodes. Meanwhile, the speedup observed when increasing
processing power for the cluster displayed no such limitations. This showed that although
DML can be used to lower training times. This showed that DML can be used to improve
training times for lower-end devices but in a limited capacity.

Keywords: Distributed Machine Learning, Raspberry Pi, Limitations, Containers, Docker.

Introduction

Machine Learning (ML) is a section of computer science that involves applying a set of
statistics over a group of data to generate a helpful process or algorithm to achieve some goal(s).
Some examples of ML applications include controlling self-driving cars (Bojarski, M. et al. 2016),
recognizing speech (Amodei, D. et al. 2016), predicting market trends (Khandani, A., Kim, A. &
Lo, A. 2010), among others. Usually, when working with any non-trivial machine learning
application, a significant amount of data is required. Machine learning models are valued
depending on how accurately they can complete the task, and it is generally the case that models
trained with higher amounts of data tend to be more accurate. Although many factors are also
involved in this, a significant amount of data is needed to be processed to pursue better and more
accurate models. This results in a rise of the necessary processing power required to train models
in a reasonable amount of time. There are two possible ways to approach this scaling problem. The

21 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

first is to perform vertical scaling. The classic example of this is adding programmable GPUs to a
host system. These GPUs feature a high number of hardware threads which improve performance;
this has been a proven and tested method (Kargupta, H. et al. 2002, Kargupta, H. et al. 2004).
Similar methods mostly revolve around a similar concept of adding additional specialized
hardware to a single host system. The second way this can be approached is by scaling horizontally.
This is where distributed machine learning systems come in; these are systems and algorithms
designed to take advantage of multiple computer nodes to process workloads faster than traditional
machine learning strategies. The benefits of such a strategy have been observed and replicated by
research such as “A holistic approach for resource-aware adaptive data stream mining” (Philip,
S.Y. 2006).

This project had the purpose of viewing how distributed machine learning can be leveraged
to allow lower-end devices to be used to complete nontrivial machine learning tasks. This was
explored by developing a training environment/system to be used for training machine learning
models. This system was used to perform various tests on a microcomputer cluster consisting of 4
Raspberry Pi (RPI) computer nodes. These tests consisted of training machine learning models as
classifiers on the CIFAR10 dataset. This dataset consists of 60000 32x32 color images of one of
ten possible classes. The main quantifiable properties of the models which were focused on were
training times and accuracy. The system allowed different configurations to train models on the
CIFAR10 test data with a varying number of nodes in the cluster and the number of processor
cores used on each host processor. These values were varied to view the impact on performance.
The unique combination of these served as the different tests conducted in the project.

Methodology

For this project, a system or environment was required which would allow for quickly
training and testing ML models not only in a single host machine but to also be distributed through
multiple hosts specifically in a computer cluster consisting of 4 raspberry pi computers. The
developed environment consists of a combination of tools and code. The system built for this
project emphasized the following qualities: simple to install, operate, and horizontally scalable.
The system was intended to have “Plug and Play” functionality and be able to be run by users as
soon as installed. By horizontally scalable it is referred to how the computational capacity of the
environment or system can be increased or decreased with relative ease by adding or removing
nodes.

As part of the development of this system the following steps were required:

1. Cluster Set up – This is the physical setup of a Raspberry Pi computer cluster and all the
necessary configurations needed to prepare nodes in the cluster.

2. Code Implementation – This encompasses the de-implementation of a machine learning
algorithm(s) capable to be used in a distributed and undistributed environment and the
configuration of used tools.

3. Test Case Development & Execution– This step involved establishing a set of different
tests to be conducted to compare the distributed and undistributed implementations and
viewing and recording observed results.

22 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

4. Analysis of Results – The final from involved analyzing the gathered data from the
previous step to draw conclusions and comparisons.

The main code for this project consisted of three main scripts or programs (using the python
programming language) these were:

1. Standalone Client – This program was responsible for running the machine learning
implementation designed to run on a single host.

2. Server Client – This program was part of the distributed machine learning program used which
works in conjunction with the worker-client program or programs to train a model.

3. Worker Client – Second half of distributed machine learning implementation.

The standalone client consisted of a simple machine learning example that would execute
various tasks such as first loading the CIFAR10 dataset into the file system and then dividing the
dataset into a testing and training dataset. Then the program would train an ML model over the
train set. An additional script was used for testing the resulting model over the test dataset and
outputting the accuracy of the model. This program was designed to be run on a single host in
traditional ML fashion. When referring to this program further on it will be either as the standalone
implementation or the undistributed implementation of the classifier algorithm. The second and
third programs were designed to be executed together in a multi-host environment i.e., the RPI
computer cluster. The second was a program that acted as server-client which was designed to run
on a master node in the cluster, this program was responsible for assigning work to worker
nodes/clients as well as grouping results of work from the worker clients once received and finally
creating a single ML model as an output. Worker nodes were nodes running the final program that
would be run in any node of the cluster other than the master node. This was reserved always just
for the server-client program.

Figure 1 shows a representation of how both the distributed and undistributed algorithms were
designed to run on the RPI Cluster:

Figure 1: Visualization of main programs used in the project.

23 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

Overall, there was always at least one instance of the server-client running on in the master
node and one to three server clients running on each worker node in the cluster which consisted of
4 RPI model 4 B computers. The server and worker clients were designed to communicate and
operate between themselves using the flower framework a python library which facilitates
implementing distributed machine learning tasks. This library would handle the creation of the
output model by aggregating the weights of the different parameters produced from each worker
and taking the average between them. Internally the flower framework uses RPC channels to
increase the speed of communication between the master and clients’ nodes.

The Processing of running a test on the system was simplified thanks to the selection of
tools used. First, test cases were defined using docker-compose files. These files defined the
appropriate images (bundles of code and dependencies) to be used in the test, where containers
(instance of the code in image) would be deployed to the cluster. The number of nodes and the
number of CPU cores used. When running the test on a single host, a single container was
sufficient, but for our distributed test using the RPI cluster, multiple containers were necessary
which had to run in different nodes in the cluster. Normally, these would have to be started
individually, in this area docker-compose files also helped as they replaced having to rely on the
Docker CLI for the deployment of our containers since it is possible to manage multiple containers
through a single compose file.

The following code sample shows an example of a docker-compose file for deploying an instance
of the server-client to the master node of the cluster:

master:
 image: ${TARGET}-master-node
 container_name: ${TARGET}-master
 build:

 context: "../"
 dockerfile: "server.${TARGET}"

 deploy:
 mode: global
 constraint:
node.label==RPI-M

networks:
 cluster_network

The files could be executed in a group of host computers through a docker swarm which
in short is a group of computers logically through their docker daemons (running docker process).
Each worker node in the cluster needed to be registered to the master node via the docker CLI to
achieve this. When running a compose file on the main node of a docker swarm, the docker daemon
handles, reads the compose files, and starts managing distribution and execution of containers on
each swarm node as specified in the compose file used.

As mentioned before, these compose files were used to define and execute the different test
cases in the project. When a test case was to be executed its corresponding compose; the file was
fed to the docker client on the master node of the RPI cluster, also known as the manager for the
docker swarm. After which docker would take care of deploying containers matching the
specification given in the compose file. This included specifying the number of nodes and

24 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

processor cores allotted for use in the test. Figure 2 shows a visual representation of the process of
building and uploading the final images containing all the necessary source code to execute each
test case and how these images were used by each node. For caching purposes, these images were
accessed through a remote registry where the images were stored. The benefit of using a registry
to distribute images is that the images do not have to be updated locally on each node of the cluster
before use.

Figure 2: Visualization of Running Test Cases.

Next the machine learning algorithm used, and its properties are reviewed. Below is a code
snippet with the declaration of the convolution neural network used for training.

Class used to define Neural network
class NueralNetwork(nn.Module):

 def __init__(self):
 # Constructor

 super().__init__()
 self.conv1 = nn.Conv2d(3, 6, 5)

 # Adding 2d Convolution Layer
 self.pool = nn.MaxPool2d(2, 2)

 # A Pooling Layer reduces the variance
 self.conv2 = nn.Conv2d(6, 16, 5)

 # Additional 2d Convolution Layer after pooling
 self.fc1 = nn.Linear(16 * 5 * 5, 120)

 # Linear tranformation
 self.fc2 = nn.Linear(120, 84)

 # Linear tranformation
 self.fc3 = nn.Linear(84, 10)

Linear trnsformation

The CNN used consists of 2 convolution layers and 3 Linear transforms. The first layer
applies a filter to extract features from the image. These would detect basic lines, curves, and basic

25 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

outlines that are detected on the image. The second layer is a pooling layer which is used to take
the average of a region when a filter is passed through producing a layer with reduced dimensions.
This output is passed through an additional convolution layer to extract additional more complex
features from the averaged previous layer. Finally, three successive linear transforms are applied
to the resulting layer. These final transforms reduce the output of the convolution layer to 10
possible outcomes corresponding to the 10 classes of which the images of the CIFAR10 dataset
could be. When running an input through the model the output with a higher weight would be
chosen as the model’s guess.

As discussed previously the testing process was done using composed files each compose file
corresponded through a different test case which is run through the system. The different test cases
consisted of running the same machine learning task. In this case, training a classifier on the
CIFAR10 data with varying amounts of worker nodes and varying amounts of processor cores.
Each possible configuration of nodes and cores had its own unique compose file. For these test
cases, various values were recorded and calculated based on the recorded data. To reduce the
variance of these values each test case was run three times to produce an aggregate of values across
three runs. For each test case the following values were recorded and/or calculated:

 Total Training time (Ttime) – This is the time required for training a model using the parameters
established in the test case. This value was averaged over three runs of the same test case.

 Total Work Time (Wtime) – This approximates the time taken to complete all training
operations for the test case. This is calculated as the average work time between all the nodes
used in the test case.

 Total overhead Time (Otime) – This is the amount of time spent by the system on
communication between nodes. This was calculated by subtracting the total work time from
the total training time.

 Work Percentage (W%) – This value represents the percentage of time the system spent
performing actual work training the model.

 Overhead Percentage (O%) – This value represents the percentage of time the system spent
communicating between nodes.

 Speedup - To check how each test case compares to the following case the speedup was
calculated through a simple division of training times.

Results

In this section the results of all test cases are compiled as well as various data visualizations
based on the recovered data, as well the results of any additional calculations performed. The
abbreviations used for variables in the previous section are used reused in this section. The addition
of “N” and “C” are short for “node count” and “core count” and represent the number of nodes
and processor cores allotted for use when running the test case. Next, Table 1 presents the result
of training a model by first varying the number of worker nodes in the system.

26 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

Table 1: Results for increasing node counts.

N : C ∆𝑇௧ ∆𝑊௧ 𝑊% 𝑂% 𝑺 ∆𝐴𝑐𝑐

1:2 936.3 936.3 1.00 0.00 0.00 0.56

2:4 478.8 437.6 0.91 0.09 1.96 0.55

3:6 387.0 327.0 0.84 0.18 2.42 0.56

From this table, it can be seen that training times were reduced by adding additional worker
nodes. Though, some additional time was lost due to overhead in the system. This however still
resulted in positive speed up values after adding additional nodes. Additional nodes could be
physically added to determine an inflection point where the overhead involved with
communication starts to be greater than the actual CPU time. Due to lack of materials, an inflection
point was determined through extrapolating from gathered data this is shown further in figure 4.
Next Figure 3 shows a visualization of the overall training time and the actual CPU time spent by
the cluster on average to train models with varying amounts of nodes.

Figure 3: Training times for test cases varying node count.

Next, figure 4 presents a visualization of CPU training times vs communication time
when increasing node count in the cluster.

27 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

Figure 4: CPU time vs Communication time extrapolated.

The amount of processing power used in each node configuration was also varied to
measure the impact additional computational power would have on each node configuration. The
next following tables present test cases which involved a fixed node count but varying the number
of processors available to use during training. Next, table 2 shows the results for varying the
number of cores used when running the cluster in a 3-node configuration.

Table 2: Results for varying Core count in 3-Node Configuration.

N:C ∆𝑇௧ ∆𝑊௧ 𝑊% 𝑂% 𝑺 ∆𝐴𝑐𝑐

3:1 2205.5 1856.9 0.84 0.16 1.00 0.57

3:2 1247.9 1086.4 0.87 0.13 1.77 0.56

3:3 815.0 726.8 0.89 0.11 2.71 0.59

3:4 628.8 561.8 0.89 0.11 3.51 0.58

3:5 503.2 453.0 0.90 0.10 4.38 0.6

3:6 387.0 327.0 0.84 0.18 5.70 0.61

From this table, it can be seen that as more cores were allotted for the cluster to use, training
times for models decreased. Next, figure 5 shows a visualization of training times for test results
using a 3-node configuration. Since this configuration contained the most data points linear and
exponential regression was used to approximate the behavior of the cluster.

Figure 5: Results for varying Core count in 3-Node Configuration.

Figure 6 presents a comparison between the trends for speedup values obtained from
increasing CPU count and increasing node count. For this figure speedup, the data from tables 1
and 2 were used to present the behavior of the system when adding computational power to the
system without adding more nodes. It is important to note that adding a node is equivalent to
adding two cores to the cluster as each RPI has two cores. This figure was created to view if

28 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

modifying the existing hardware would produce better results than adding additional nodes to the
cluster.

Figure 6: Speedup comparison for varying nodes and cores.

Discussion

Training times for models when adding additional nodes outpaced training times for
models trained by adding additional cores. At least meanwhile, the number of cores remained low.
Also, from observing the behavior of speed up values it was found that adding additional nodes
has diminishing returns when compared to simply adding more processing power to the system.
This is a strong indication that there is a hard limit to the potential reduction of training times that
can be achieved using this implementation of an RPI cluster simply by adding additional nodes.
From figure 5 it can be inferred that this limit lies around 4 to 5 nodes when the overhead time
starts to become greater than the actual time spent performing work. This is consistent with current
literature regarding how coordination and communication time between nodes is one of the more
significant bottlenecks in distributed environments, although due to the low number of nodes used
this did not reduce training times significantly.

Conclusion

For this project, an environment for training machine learning models with the
functionality to scale up or down with relative ease was successfully created. This system was used
to examine the performance of an RPI cluster in training machine learning models over the
CIFAR10 dataset. By observing training times produced by running the test cases on the RPI
cluster, it was found that in general, models that were produced using a distributed approach were
trained in less time than models trained with an undistributed approach, at least for initial test
cases, which involved lower amounts of cores meanwhile when examining the effect of adding
additional cores to the system without the added complexity of adding additional nodes it was
found that this could result in greater speedup values when adding the equivalent processing power
of an additional node to an undistributed system. It is apparent that training machine learning
models were feasible in an RPI cluster but there were some limitations. For example, examining
recovered data, it was found that training time could not be reduced indefinitely by adding
additional nodes to the cluster due to diminishing returns. For this particular implementation, the

29 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

Author: Torres, Torres I., Cruz, Alfredo

max practical number of RPI that could be used in the cluster was found to be from 4 to 5. Since
RPI are not traditionally designed to have their hardware be upgraded, this creates a hard limit for
workloads able to be run on RPI clusters.

Acknowledgments

This work is supported by, or in part by, the DoD Cybersecurity Scholarship Program (CySP)
under grant # H98230-20-1-0355. Special thanks are extended to Dr. Alfredo Cruz, Ph.D. of the
Polytechnic University of Puerto for his extended supervision, guidance, and patience throughout
this project.

References

Amodei, D. et al. (2016). Deep speech 2: End-to-end Speech Recognition in English and
Mandarin. PMLR. Retrieved January 30, 2021, from
http://proceedings.mlr.press/v48/amodei16.html

Bojarski, M. et al. (2016). End to End Learning for Self-Driving Cars. Retrieved January 25,
2021, from http://arxiv.org/abs/1604.07316

Kargupta, H. et al. (2002). MobiMine: Monitoring the Stock Market From a PDA. ACM Explore.
News., 3, 37–46.

Kargupta, H. et al. (2004). VEDAS: A Mobile and Distributed Data Stream Mining System for
Real-time Vehicle Monitoring. In Proceedings of the 2004 SIAM International Conference
on Data Mining, Lake Buena Vista, FL, USA, 22–24. 300–311.

Khandani, A., Kim, A. & Lo, A. (2010). Consumer Credit-risk Models via machine-learning
algorithms, Journal of Banking & Finance, 34, issue 11, 2767-2787.

Philip, S.Y. (2006). A Holistic Approach for Resource-aware Adaptive Data Stream Mining.
New Gener. Comput., 25, 95–115.

30 21st Information Institute Security Conferences, Las Vegas, NV, May 26-27, 2022

