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Abstract 

Organizations and individuals have been moving to the cloud computing technology looking 
for effective and fast computing services. Confidential information is becoming more 
vulnerable to leak due to outsource computations to third-parties. The issue of data breaches 
could remove all the benefits organizations might get by moving to the cloud-based services. 
The main goal of securing information is to provide confidentiality, authenticity, integrity 
and data privacy. Data encryption is being widely employed to secure data. However, as 
users need to process data in the cloud, normal encryption schemes are practically 
inapplicable because they require the transmission of the secret keys to the server side to 
obtain the original data thus performing the required computation on the plaintext. Fully 
homomorphic encryption can be considered as an effective process that supports arbitrary 
computation on the ciphertext without requirement of decryption in the cloud. A genetic 
algorithm is a search operation based on natural genetic and natural selection. Applying the 
concept of Genetic Algorithms on cryptosystem provides strong randomness that hardens 
the attacking process for the ciphertext. In this paper, a method to use Genetic Algorithm to 
generate keys for the fully homomorphic encryption scheme is described and its 
effectiveness is examined. Moreover, some simple computations were performed on the 
encrypted data as well. Results showed that a GA generated key provides more randomness 
than other conventional methods used to generate public and private keys. 

Keywords: Cryptography, Fully Homomorphic Encryption Schemes (FHE), Genetic 
Algorithm, Cloud Security, Confidentiality.  

1 Introduction  
Despite the efficient computing solution and economic advantages associated with cloud computing, users 
are very worried about security and confidentiality of data stored and processed in the cloud. One of the 
main solutions provided for safeguarding the data stored in the cloud is the encryption to harden the access 
by unauthorized personnel. Hence, in the era of “big data” and “cloud computing”, encryption solutions 
must be applied to achieve the objective of data protection including confidentiality and integrity (Alkharji 
& Liu, 2016). One Time Pad (OTP) and Pseudo Random Number Generators (PRNG) are some of the 
traditional techniques utilized for generating unique keys. Many applications substitute these methods with 
more innovative one called Genetic Algorithm (GA). Selecting random key produced by GA gives the 
technique challenges that can hardly discover. Increasing the complexity included in the generation process 
can make the key more complex (Soni & Agrawal, 2013). 
  
The usage of traditional symmetric or asymmetric (public key) encryption algorithms are not completely 
sufficient with cloud-based scenarios. When users need to process data in the cloud, normal encryption 
schemes will not work well because they require that the secret keys must be transmitted to the server side 
to decrypt and perform the calculations on the plaintext. Once encrypted data is opened for computations, 
it can’t be processed safely within the cloud and this presents a major cloud computing constraint. This 
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drawback can be overcome by using Homomorphic Encryption (HE). Fully homomorphic encryption 
(FHE) supports an arbitrary number of addition and multiplication computations to be carried out on 
ciphertext without exposing the original data. The evaluation process encrypted outcomes matches the 
result of operations when performed on the plaintext. For secure data processing in cloud, FHE can be used 
to protect data privacy because it allows execution of operations on encrypted records without decryption. 
As such, the usage of FHE is a crucial step in enhancing cloud-computing security. More details about FHE 
found in (Alkharji & Liu, 2016) for the authors. 
 
In this paper, we describe a method to use Genetic Algorithms to generate keys for the fully homomorphic 
encryption scheme and examine its effectiveness. Moreover, some simple computations were performed on 
the encrypted data as well. Results showed that a GA generated key provides more randomness than other 
conventional methods used to generate public and private keys. The remaining of the paper is organized as 
follows: section 2 gives more details about Genetic Algorithm (GA), while section 3 provides a review of the 
related works regarding FHE and GA algorithms. Section 4 discusses the proposed work, section 5 provides 
examinations to prove the security of the algorithm used, and finally, section 5 presents the conclusion and 
future work.  
 

2   Genetic Algorithm 
The paper tries to examine the key generating method for public key cryptography to be highly random and 
distinctive by utilizing genetic algorithm hence making PKC more secure. Genetic Algorithms (GA) is known 
as “randomized search and optimization algorithm” founded on the philosophy of “natural genetics and 
natural selection” (Soni & Agrawal, 2013; Mishra & Siddharth, 2013). In many applications, GA has proved 
to be a powerful and dependable technique (Sindhuja & Pramela, 2014). It could be applied in numerous 
ways in the PKC field either to generate keys, to enhance the standard encryption algorithm thus improving 
its degree of security, or to produce fresh symmetric/asymmetric algorithm. Fundamentally, genetic 
algorithm entails three operators utilized upon generation of the population including selection, crossover 
and mutation (Jawaid & Jamal, 2014). The application of GA is explored to establish the finest and more 
randomized key for the cryptographic algorithm. Superior complexity involved in the process of generating 
the key make the ciphertext tough for the cryptanalyst to decipher (Soni & Agrawal, 2013). Figure 1 
(Jhingran et al., 2015) shows GA working mechanism. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1: Genetic Algorithm Working Mechanism 

 

3   Related Works 
Researchers in the information security field are interested in exploring the contribution of genetic 
algorithm in the field of PKC. Numerous studies have conducted and analyzed the past efforts made in this 
field. Firstly, in 2013, Mishra & Bali presented an application that demonstrates the use of GA in the key 
generation using three different tests to check the replication of chromosome, thus providing effective and 
enhanced performance outcomes. Secondly, the approach suggested by (Naik P. & Naik G., 2013) illustrates 
an effort to use the randomness exhibited in crossover and mutation procedures for generating an 
asymmetric key pair for effective encryption and decryption of message. The number of crossover and 
mutation points coupled with permutation factor and arbitrary byte to be utilized in the private key 
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generation process dictates the span of the secret key, and thus the power of the algorithm. Thirdly, Soni & 
Agrawal (2013) introduced an approach founded on GA along with random number generator to add 
complexity. The key generation task experienced by several processes and the main one will be the 
population’s fitness value. Moreover, in 2014, Jawaid & Jamal introduced another study in this field that 
demonstrates how to use this innovative approach of key generation in most effective manner along with 
its implementation by following the concept of natural key selection. Furthermore, Jawaid et al., (2015) also 
applied GA using autocorrelation test. The final key is chosen depending on the autocorrelation value and 
hence it is as unique and random as possible.  
 
The first encryption scheme that is fully homomorphic based on ideal lattices was invented in 2009 by Craig 
Gentry. Gentry’s innovation (2009a, 2009b) can be summarized into three stages including constructing a 
some-what homomorphic encryption (SWHE) scheme, “squashing” the decryption circuit until it is 
straightforward enough to be handled within the homomorphic capacity of the SWHE scheme, and finally, 
“bootstrapping” technique to get a FHE scheme. Since Gentry distributed the initial FHE system, this 
powerful discovery became a dynamic research subject and there has been huge enthusiasm for this scope. 
Researchers have been adopted other techniques e.g., integers instead of lattices, or learning with error. 
Consequently, the execution of the following schemes has been improved. But as a conclusion, FHE still 
needs an improvement regarding the limitation on efficiency, and operations overhead (Gentry, 2009a, 
2009b; Brakerski & Vaikuntanathan, 2011b). More information about Gentry’s work and the following FHE 
schemes along with their fundamental definitions, algorithms, semantic security, and possible applications 
are provided in (Alkharji & Liu, 2016). 
 
The initial effort to improve Gentry's fully homomorphic public key encryption scheme was made by Smart 
and Vercauteren (2010). They executed a variation utilizing “principle ideal lattices” of prime determinant, 
thereby presenting a FHE scheme which has both relatively small key and ciphertext size. In order to obtain 
a faster FHE scheme than Gentry’s invention, research by Stehle and Steinfeld (2010) depicted two main 
improvements considering ideal lattices and its examination. Gentry and Halevi (2010) proposed an 
optimized version of (Smart & Vercauteren, 2010), which permit to implement the squashing functionality, 
thus obtaining a bootstrappable scheme to convert to a FHE scheme. In their implementation, they 
proposed a number of major and minor optimizations along with facilitation that allow to execute all aspects 
of the scheme. In 2011, Smart & Vercauteren recalled their previous work (Smart & Vercauteren, 2010), and 
proved that it can support SIMD operations (Single Instruction, Multiple Data) in the finite field of 
characteristic two by modifying key generation. In 2011, Gentry and Halevi developed a new leveled FHE 
approach as the hybrid of a SWHE and a “Compatible Multiplicatively Homomorphic Encryption” (MHE) 
scheme. Basically, it demonstrated how to bootstrap excluding the method of “squashing” the decryption 
circuit. In 2012, Gentry et al. presented an approach that bypasses the reduction of one integer modulo 
another homomorphically to some degree, by using an arithmetic modulus near a power of two.  
(Dijk et al., 2010) proposed a very simple SWHE framework (DGHV scheme) over the integers, in which all 
mathematical operations are done over the integers using only “elementary modular arithmetic 
computation” instead of ideal lattices over a “polynomial ring.” Coron et al. (2011) proposed in their 
contribution a solution that minimize the public key size of the DGHV scheme (Dijk et al., 2010) from 
O ̃(λ10) to O ̃(λ7). Another research was proposed by Coron et al. (2012). The authors used a compression 
procedure and Modulus Switching to minimize the public key size of (Dijk et al., 2010) FHE cryptosystem 
over the integers (DGHV) from O ̃(λ7) to O ̃(λ5).  
 
Brakerski and Vaikuntanathan (2011b) proposed a radical change to develop FHE schemes, known as (BV) 
scheme, whose security linked with the hardness of the decisional (standard) LWE assumption proposed 
by Regev (2010). This scheme is unique as it does not totally follow the Gentry blueprint (2009a, 2009b), 
and DGHV scheme (Dijk et al., 2010) over the integers. This resulting FHE scheme has very short 
ciphertexts, making it more effective than prior ones. Lauter et al. (2011) proposed in their work an 
implementation of the “Somewhat” public key encryption scheme from BV scheme (Brakerski & 
Vaikuntanathan, 2011b), while employing the computer algebra system Magma. Brakerski et al., (2012) 
constructed a leveled BGV cryptosystem on techniques of the (BV) scheme (Brakerski & Vaikuntanathan, 
2011b) while using R-LWE problem from (Lyubashevsky et al., 2010). The main contribution in their work 
was a new strategy of constructing a leveled FHE schemes that is able to evaluate “arbitrary polynomial-
size circuits”, while eliminating the bootstrapping procedure proposed by Gentry. Another technique by 
Brakerski and Vaikuntanathan (2011a) is applied by getting rid of the additional presumption “circular 
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security.” Their public key encryption scheme is relied on the “Polynomial Learning with Errors” (PLWE) 
assumption, which is a simplified form of R-LWE problem proposed by Lyubashevsky et al. (2010). 
 

4.  FHE Model Using GA Key Generation 
This section elaborates all the practical methods including generating the keys for the FHE scheme using a 

GA algorithm, RSA modulo, FHE procedures, and examine its efficiency. 

4.1 Key Generation Using Genetic Algorithm 

Figure 2 demonstrates the key generation process using GA mechanism to be used in the FHE. Before 
starting GA process, key length should be chosen in order to decide the GA working parameters. To generate 
RSA with 4096-bit key, we would like to have a lots of random key stream bits (more than 4000), since we 
need to throw away and retest parts in case the primality test fails. So, in our case, the proposed GA key 
length that can provide maximum randomness of numbers is 4k. When using 160-bits initial seed of PRNG 
or less, it is barely enough to generate RSA with 1024-bits key length. However, internal state of at least 
4096-bits is required to securely generate RSA with 4096-bits key. The proposed parameters for the GA 
process as follows:  
 

• Maximum number of generations = 10000.  

• Initial population size = 64. 

• Selection function = roulette-wheel.   

• Crossover type = uniform crossover. 

• Mutation rate = 0.003. 
 
 

 

 
Figure 2: Key Generation Using GA 

 

Choose proper key length = 4K 

Choose 
 Max number of generations = 10000  

Initial population size = 64 

Selection function = roulette-wheel   

Crossover type = uniform crossover 

Mutation rate = 0.003  
 

 

Fitness Function  

Calculate fitness values then create an array with the 
cumulative normalized fitness values 

 

 

Selection 
Select two parents from initial population which is 

having highest fitness values 

Crossover  

Perform uniform crossover where bits are adopted 

randomly from both parents to acquire the offspring 

Mutation  
Pick one or more chromosome bits and mutate into its 

complement, a ‘0’ mutates into ‘1’, and ‘1’ mutates into ‘0’ 

 
Number of generation < 

10000 

Yes 

 

Return 4K key length 

No 

END 

START 
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The following steps show the GA process starting from initial population all the way up to extracting the 
final population: 
 
Step 1. Initial Population Generation. The GA’s first step is to find the initial population, which is the 
process of randomly creating the set of individuals. The result of the initial population step is the first 
generation. A set of operators is applied to the preceding population to create the next generation (Jawaid 
& Jamal, 2014; Jawaid et al., 2015).  
 
Step 2. Fitness Function. The second step is to calculate the fitness function which is served an 
extremely critical role in guiding genetic algorithm. It is an objective function that tests for the 
chromosome’s suitability and defines how close the output is to the anticipated goal value. The individual 
chromosomes with higher fitness value is chosen from the initial population for the advanced process 
(Jawaid et al., 2015; Mishra & Siddharth, 2013).  In this work, we normalized the fitness values obtained 
and further created an array with the cumulative normalized fitness outcomes. 
 
Step 3. Selection. Selection level starts once the population has been generated based on the fitness 
values result. In this work, using roulette-wheel selection, two parents are picked randomly from the initial 
population in the selection process. The procedure is going to be repeated until there are enough selected 
individuals.  
 
Step 4. Crossover. After creating a fresh population, parents are paired together by applying crossover 
operator. It refers to a genetic operator which assists in linking two parent’s chromosomes from the selected 
parents to generate a fresh chromosome. This newly produced chromosome known as a child that picks a 
single trait of chromosome from each parent for the subsequent generation (Dutta et al., 2014; Jawaid et 
al., 2015; Mishra & Siddharth, 2013). Numerous forms of crossover techniques exist including single point 
crossover, two-point crossover, as well as uniform crossover (Sindhuja & Pramela, 2014). In this paper, 
uniform crossover is being used where bits are adopted randomly from both parents to acquire the 
offspring. Figure 3 illustrates the strategy of uniform crossover. 
 

                                
 
 
 
 

 
Figure 3: Uniform Crossover  

 
Step 5. Mutation. The last step of the GA is Mutation which summarize in altering one or more gene 
values within a chromosome from its original state. The bit inversion technique is being applied 30 times 
in this work which entails flipping one or more chromosome bits into its complement, for instance, a ‘0’ 
mutates into ‘1’ and the vice versa (Jhingran et al., 2015; Sindhuja & Pramela, 2014). After mutation, the 
solution implies that the much more fit chromosomes replace the less fit ones (Jawaid et al., 2015).  
 
4.2 Modulo Keys Creation from GA Inputs  
Figure 4 shows the detailed process of finding the public and secret vectors from the GA key outcome. The 
following steps elaborate the RSA modulo process: 
• Pick two prime numbers from the key vector that matches the RSA conditions in order to provide 

maximum randomness and to prevent any manual interception in picking the key.  
• Calculate n = p. q  

• Calculate φ(n) = (p - 1) . (q - 1)      

• Calculate e, such that 1 <  e  < φ(n) by finding the gcd (e, φ(n)), where (e, φ(n)) are co-primes. 

• Calculate d, such that (d * e) mod φ(n) = 1 

Parent1 0 1 0 0 1 1 0 0 1 1 1 0 

             
Parent2 1 1 1 0 0 1 0 1 1 0 0 1 

             
Offspring 

After 
Uniform 

Crossover 

0 1 0 0 0 1 0 0 1 0 0 1 
            

1 1 1 0 1 1 0 1 1 1 1 0 
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Figure 4: Create Public and Private Key 

4.3 Encryption  
The following algorithm (Figure 5) explains the encryption process. User will be requested to enter the 
message. A conversion procedure to ASCII code is performed on the entered text to start encryption method 
using modular exponentiation.  
 
 

 
 
 
 
 
 
 
 
 

Figure 5: Encryption Algorithm 
 
 
4.4 Fully Homomorphism 
Fully homomorphism is the process of applying number of different operators on the ciphertext without 
decryption. These operators vary from mathematical to logical operators. Examples of operators are 

Encryption:   Encrypt (plaintext, pk): ciphertext  

Input:  

         Plaintext ∈ Zn ,     where Zn = {0, 1, …, n-1},  

        pk = (n , e) 

Computation: 

        Compute ciphertext = plaintext e mod n  
Output:  

        Ciphertext ∈ Zn 

Yes 

Pick two prime numbers from the generated key 

that matches the RSA conditions  

 

Compute n = p. q   

Compute φ(n) = (p – 1). (q - 1)        

 

Yes 

Not found  

gcd (prime array (i), p) 

 If gcd (prime array(i), p) = 1 

No 

No 

 Not found e 

 if (i < φ(n)) & (gcd (prime array(i), 

φ(n)) = 1 

No 

No 

Yes 

 e = i         

 End of matrix of prime 

numbers 

 START 

 

Yes 

Return d = i 

Yes 

 q = prime array (i)         

 
mod (e * i , φ(n)) =1  

No 

Yes 

 END 
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addition, multiplication, oring, anding, …etc. In this paper, the evaluation process on the ciphertext are 
addition and multiplication. Figure 6 illustrates FHE mechanism on the encrypted text. Assuming that we 
may have two ciphertext (cipher1, cipher2), the length of two ciphertexts could be matched so the evaluation 
process will be run smoothly. However, if they are not matched, one of the following procedures will be 
performed according to the type of operation on the encrypted data: 
• If the operation is addition, the additive neutral element would be added to the last element of the 

matrix with higher length.  

• If it is multiplication, the multiplicative neutral element would be multiplied with the last element of 
the matrix with higher length. 

 

 
 Figure 6: Fully Homomorphism 

 
4.5 Decryption  
The final stage at the receiver side is to recover the plaintext from the encrypted text. Secret vector 
exponent d will be used to get the original message. Figure 7 shows the decryption algorithm. 
 

Decryption:   Decrypt (ciphertext, sk): plaintext 

Input:  

     Ciphertext) ∈ Z n           

     sk = (d)       

Computation: 

     Compute plaintext = ciphertext d mod n 
Output: (plaintext) 

      plaintext ∈ Z n         

 
Figure 7: Decryption Algorithm 

 

Divide the encrypted text into two 

sub matrices (cipher1, cipher2)  

For addition operation, add the additive neutral element to the last 

element for the matrix with higher length  

For multiplication operation, multiply the multiplicative neutral 
element with the last element for the matrix with higher length 

 Uniform matrices length 
Yes 

Evaluation process 

Addition: add (cipher1, cipher2) 

Multiplication: mult (cipher1, cipher2) 

No 

 START 

 

 END 
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5. Analysis & Result 
5.1 Time Complexity 

The main goal of applying genetic algorithm is to get the maximum randomness for the 4096-bits RSA key 

thus guaranteeing more security. The common way to measure the efficiency of an algorithm is to observe 

the execution time for a given size of inputs according to processor speed. In this paper, 10000 iteration 

including 30 mutation operations are performed on 64 chromosomes, each has length of 64. The execution 

is done on i3 Dual‑Core Processor, with 4GB RAM. The performance tests ran for generation sizes k= 32, 

48, 64, and number of generations g = 500, 1000, 2000, 5000, and 10000. For each pair of these values, 

the average execution time is measured and displayed in Table 1. Increasing the size of GA key length and 

the number of generations will cause slightly increase in running time (see Figure 8), but it’s worth it 

because the possibility of getting prime numbers to compute modulo operation for RSA key generation will 

increase significantly.  

In this work, the time taken to generate the final randomized key is 3.5760 milliseconds. But Soni & Agrawal 

(2013) stated that in their experiment “the time taken to generate key for 300 iteration with 10 new 

population each time and 10 crossover and mutation operations each iteration is 75.382 seconds.” The huge 

difference in the population size and maximum number of generations in their case is expected to give less 

complexity but in contrast the upper bound on the execution time of our experiment is much more less with 

64 initial population and 10000 iteration.   

 

 

  Number of Generations 

  g=500 g=1000 g=2000 g=5000 g=10000 

Population Size 

K=32 0.1560 ms 0.2030 ms 0.3440 ms 0.7500 ms 1.4380 ms 

K=48 0.187 ms 0.2960 ms 0.5160 ms 1.1720 ms 2.3130 ms 

K=64 0.2500 ms 0.4370 ms 0.7650 ms 1.8280 ms 3.5760 ms 

 
Table 1: Running time of the GA for g generations of population size k  

 
 

 
 

Figure 8: Time Complexity for GA Key Size 
 

 

 

0.0000

0.5000

1.0000

1.5000

2.0000

2.5000

3.0000

3.5000

4.0000

g=500 g=1000 g=2000 g=5000 g=10000

Number of Generations

Population Size K=32 Population Size K=48 Population Size K=64



                                                                       Genetic Algorithm based key Generation for Fully Homomorphic Encryption 

                                                                                Information Institute Conferences, Las Vegas, NV, April 18-20, 2017 9 

5.2 The Nature of Randomness 

Degree of movement test is calculated to observe the level of randomness in the GA final key. Table 2 shows 

the sample of 10✕ 10 key length represented in double symbols, while in practice 64✕64 key length is 

analyzed. The test shows that the final population has ‘0’ correlation with the initial one. The final key 
generated is purely random, unique, and unpredictable. Comparing with Mishra & Bali’s result (2013), they 
observed the change for 8-bit key length sample in binary representation which is barely noticed. Their 

result shows some difference in bits between the two populations for a small sample. 

 Length 

Population 
Size 

341 479 388 442 502 424 295 261 261 454 

357 358 363 275 441 288 377 443 382 293 

301 458 478 435 345 425 309 394 297 407 

342 487 506 270 325 422 310 375 397 294 

454 275 372 350 464 462 509 270 484 498 

280 341 336 344 363 301 330 312 391 385 

412 358 326 294 314 349 435 297 419 268 

380 395 286 406 270 488 351 318 381 407 

260 328 347 445 404 350 399 345 494 489 

490 257 433 334 299 454 293 282 318 306 
 

Table 2: Sample of Degree of Movement  

 
Results depict the effectiveness of the proposed scheme under two different scenarios which summarized 
as follows. First, the time taken to generate key from 10000 iteration with 64 populations and 30 mutation 
operations is 3.5760 milliseconds. Second, the test performed to check the nature of randomness shows 
that the final population has ‘0’ correlation with the initial one. Both results prove that the key generated 
for FHE is non-repeating and unique.  
 

6. Conclusion & Future Work 
Fully homomorphic encryption addresses the cryptographic needs for secure cloud computing applications. 
Therefore, FHE has attracted a lot of interests in recent years. This paper argues that strong, non-repeating, 
high-quality random keys generated by GA will enhance the security of FEH schemes, making it more 
difficult for the cryptanalysts to break the data. The two directions in our future work will be to use machine 
Learning with Error (LWE) to harden the process for the attacker to find the secret key, and to give formal 
security proof on our scheme. 
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